

 ARL-TR-7683 ● MAY 2016

 US Army Research Laboratory

A Guide for Developing Human-Robot
Interaction Experiments in the Robotic
Interactive Visualization and Experimentation
Technology (RIVET) Simulation

by Kristin E Schaefer and Ralph Brewer

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7683 ● MAY 2016

 US Army Research Laboratory

A Guide for Developing Human-Robot
Interaction Experiments in the Robotic
Interactive Visualization and Experimentation
Technology (RIVET) Simulation

by Kristin E Schaefer
Oak Ridge Associated Universities, Oak Ridge, TN

Ralph Brewer
Vehicle Technology Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

May 2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

September 2013–December 2015
4. TITLE AND SUBTITLE

A Guide for Developing Human-Robot Interaction Experiments in the Robotic
Interactive Visualization and Experimentation Technology (RIVET) Simulation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kristin E Schaefer and Ralph Brewer
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-HRS-E
Aberdeen Proving Ground, MD 21005-5425

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7683

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Robotic Interactive Visualization and Experimentation Technology (RIVET) is a computer-based simulation system that
was developed to merge game-based technologies with current and next-generation robotic development. The original design
of RIVET specifically addressed engineering-related functionality, including the capability to test critical algorithms prior to
field testing a robotic system, perform rapid consecutive test scenarios to find software bugs, and conduct algorithm
verification across a wide spectrum of test scenarios. While these functional test procedures have been shown to be essential,
the design of this game-based platform also lends itself to human-in-the-loop (HITL) experimentation. This technical report
outlines the capabilities of RIVET as a Human Factors platform for HITL human-robot interaction (HRI) experimentation. It
further provides a primer for HRI experimentation development for the nonprogrammer with example TorqueScript files and
step-by-step instructions to develop the virtual environment. Additional recommendations for collecting subjective and
objective human data related to HRI are discussed.
15. SUBJECT TERMS

human factors, human-in-the-loop, human-robot interaction, RIVET, simulation

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

162

19a. NAME OF RESPONSIBLE PERSON

Kristin E Schaefer
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-5972
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Figures vi

Acknowledgments xi

1. Summary 1

2. Introduction 1

2.1 Human-Robot Interaction 2

2.2 HRI and Computer-Based Simulation 5

3. RIVET and Carve for HRI Experimentation 7

3.1 Overview of RIVET 8

3.1.1 General Capabilities 8

3.1.2 Hardware/Software Considerations 9

3.1.3 RIVET Menu Options 9

3.2 Overview of CARVE 11

4. Procedures for Using RIVET for HRI Experimentation 12

4.1 Initial Research Definition 12

4.2 Setting up the Mission 13

4.2.1 Virtual Terrain 13

4.2.2 Static Objects 14

4.2.3 Dynamic Objects: Vehicles 16

4.2.4 Dynamic Objects: People 18

4.3 Robot Autonomy 20

4.3.1 Teleoperation, Remote Control, Manual Control 20

4.3.2 Waypoint Following 23

4.3.3 Autonomous Capabilities 24

4.4 Alternative Tasks 26

4.5 Manipulating and Measuring HRI 27

Approved for public release; distribution is unlimited.

iv

5. Previous HRI Research Using RIVET 29

5.1 Cordon and Search 30

5.1.1 Target Detection: Person 31

5.1.2 Target Detection: Object 32

5.1.3 Navigation 33

5.1.4 Transparency 34

5.2 Gunnery 34

5.3 Driverless Vehicle Transport 36

6. Discussion 38

6.1 Lessons Learned 38

6.1.1 Problem No. 1: CARVE Does Not Always Load Correctly 39

6.1.2 Problem No. 2: CARVE Takes Too Long to Load 39

6.1.3 Problem No. 3: Picture Quality Is Granulated or Pixelated 39

6.1.4 Problem No. 4: Camera Sensor Is Located in the Wrong
Place 40

6.1.5 Problem No. 5: Need to Customize Pre-loaded Animation
Sequences 41

6.1.6 Problem No. 6: Removing Add-ons from Pre-loaded Graphics
and Animations 43

6.2 Support and Documentation 45

6.2.1 RIVET Developer’s Guide 45

6.2.2 GarageGames.com Online Forums and Documentation 45

6.2.3 The Game Programmer’s Guide to Torque 45

6.2.4 Scripting 46

6.2.5 Animations 46

6.2.6 Other Torque Resources 46

7. Conclusions 47

8. References 48

Appendix A. RIVET Menus 55

Appendix B. CARVE Menus 59

Approved for public release; distribution is unlimited.

v

Appendix C. Creating a New Mission: Load RIVET 65

Appendix D. Creating a New Mission: Editing the Terrain 77

Appendix E. Add Static Objects 83

Appendix F. Creating a Path 93

Appendix G. Add a Path-Following Vehicle 99

Appendix H. Trigger a Non-player Character 103

Appendix I. Delete a Non-player Character with a Trigger 111

Appendix J. Creating Crowds 113

Appendix K. Loading the CARVE Application 121

Appendix L. CARVE Directions for Waypoint Following 131

Appendix M. Directions to Set Up the Radar Task 139

List of Symbols, Abbreviations, and Acronyms 145

Distribution List 147

Approved for public release; distribution is unlimited.

vi

List of Figures

Fig. 1 RIVET Main Menu GUI ..10

Fig. 2 RIVET and CARVE setup for single user, remote sensor, or GUI
combination..11

Fig. 3 Customizable simulation environment for HRI (RIVET, BOLT,
CARVE) ...12

Fig. 4 Main Menu screen..13

Fig. 5 Load Mission screen ..14

Fig. 6 Complex world building ..15

Fig. 7 Example of the view from the World Editor Inspector16

Fig. 8 Example TorqueScript for a static object located within the Mission
File ...16

Fig. 9 Examples of unmanned systems available within RIVET17

Fig. 10 Examples of path-following vehicles in RIVET18

Fig. 11 Example of crowd modeling in RIVET ...19

Fig. 12 Crowd Editor GUI in RIVET ...19

Fig. 13 Logitech gamepad controller current button layout21

Fig. 14 Touch screen track ball for driving controls ..21

Fig. 15 Microsoft Kinect sensor ...22

Fig. 16 Logitech G27 racing wheel and pedals, and additional button
controls ...23

Fig. 17 Waypoint following in CARVE...24

Fig. 18 Options for dynamic waypoints in CARVE ..24

Fig. 19 Waypoint Action menu ..25

Fig. 20 Dynamic waypoints available actions ..26

Fig. 21 Alternative radar target detection task in CARVE27

Fig. 22 RCTA motivating scenario (ARL Robotics Collaborative Technology
Alliance 2012) ..30

Fig. 23 Terrorist NPCs ...32

Fig. 24 Example of RIVET map, targets, and avatars (Talon and Soldier)33

Fig. 25 Gunnery range map ..35

Fig. 26 GUI editor: example of gunnery user interface GUI setup36

Fig. 27 Virtual environment representing the medical facilities on a US Army
post ...37

Approved for public release; distribution is unlimited.

vii

Fig. 28 Customizations to the TAC-C ..38

Fig. 29 Location to change the screen size...40

Fig. 30 TorqueScript file in Torsion for adapting the camera sensor placement
for the TAC-C vehicle ...41

Fig. 31 Example of adapting animations: spinning M1642

Fig. 32 Example code for customizing rotation animations on the M16 rifle .43

Fig. 33 Directory location of files to remove weapons systems from the TAC-
C ...44

Fig. 34 Creation of a temporary folder ...44
Fig. A-1 RIVET main menu GUI for main user ..56

Fig. A-2 RIVET load menu GUI for main user..56

Fig. A-3 RIVET main menu GUI for client computer57

Fig. A-4 RIVET join mission GUI for client computer57
Fig. B-1 CARVE main menu GUI ...60

Fig. B-2 Settings submenu ...61

Fig. B-3 User interfaces submenu ..62

Fig. B-4 Vehicle operations submenu ..63
Fig. C-1 RIVET load mission menu...66

Fig. C-2 Selecting a player character: Humvee ..67

Fig. C-3 Selecting a mission ..68

Fig. C-4 Changing camera views: example of a birds-eye view69

Fig. C-5 How to save a new mission file ...69

Fig. C-6 Rename file ..70

Fig. C-7 Save mission as new file name ..70

Fig. C-8 Selecting objects in the VE ..71

Fig. C-9 Open saved user mission ..72

Fig. C-10 Example TorqueScript to update the user mission name for the
main menu GUI..73

Fig. C-11 Main menu GUI: updated user mission file name73

Fig. C-12 Create map screen ...74

Fig. C-13 RIVET directory location for map (.png) and location (.cs) files74

Fig. C-14 User mission directory ...75

Fig. C-15 TorqueScript: adding the map ..75

Fig. C-16 Main Menu GUI: user mission file with map75

Fig. C-17 Error message...76

Approved for public release; distribution is unlimited.

viii

Fig. D-1 Terrain Editor tool..78

Fig. D-2 Terrain Editor: Action submenu ..78

Fig. D-3 Terrain Editor: Brush submenu ..79

Fig. D-4 Edit the shape of the terrain ...79

Fig. D-5 Terrain Painter tool ..80

Fig. D-6 Texture submenu ..80

Fig. D-7 Available terrain textures ...81
Fig. E-1 Original view ...84

Fig. E-2 Fly mode ..84

Fig. E-3 World Editor Creator tool to add objects ...85

Fig. E-4 RIVET static object directory ..85

Fig. E-5 3D Object Catalog VE located in the Main Menu GUI86

Fig. E-6 Options for static buildings ..86

Fig. E-7 Options for static warehouses ..87

Fig. E-8 Options for static signs and other obstacles ...87

Fig. E-9 World Editor Inspector menu...88

Fig. E-10 Locating an object file in the World Editor Inspector89

Fig. E-11 User VE from fly mode..89

Fig. E-12 Adding a static object through the Interiors menu90

Fig. E-13 Initial building placement ..90

Fig. E-14 Moving an object within the VE ..91

Fig. E-15 Rotating an object ..91
Fig. F-1 Naming a new path ..94

Fig. F-2 Adding a PathMarker to the new path ...95

Fig. F-3 Selecting all PathMarkers on a path...96

Fig. F-4 Linking the path ...97

Fig. F-5 Setting the path sequence order (seqNum) ..98
Fig. G-1 Path-following vehicle: setting vehicle criteria100

Fig. G-2 Path-following vehicle: adapting criteria ...100

Fig. G-3 Path-following vehicle: adjusting the vehicle speed101
Fig. J-1 Crowd Editor menu ..114

Fig. J-2 Add a crowd ...114

Fig. J-3 Crowd properties menu ..115

Fig. J-4 Crowd Location menu..116

Approved for public release; distribution is unlimited.

ix

Fig. J-5 Crowd location area ...116

Fig. J-6 Generate Contour menu ...117

Fig. J-7 Contour area ...117

Fig. J-8 Overhead view of multiple crowds in World Editor119
Fig. K-1 Required files ...122

Fig. K-2 Start RIVET Server computer with BOLT-enabled vehicle122

Fig. K-3 Mount the RIVET BOLT sensor to the vehicle using the Client
computer ..123

Fig. K-4 Sensor Configuration GUI ...124

Fig. K-5 Vehicle configuration...124

Fig. K-6 Mount Sensor GUI ...125

Fig. K-7 CARVE shortcut icon ..125

Fig. K-8 CARVE Connectivity tool ...125

Fig. K-9 Check connectivity with RIVET machines..126

Fig. K-10 Map upload from RIVET to CARVE ..126

Fig. K-11 Example of the CARVE failure to load map screen127

Fig. K-12 Saving the map in CARVE: open the map ..127

Fig. K-13 Saving the map in CARVE: select map save icon128

Fig. K-14 Saving the map in CARVE: assign a unique map name128

Fig. K-15 Saving the map in CARVE: exit the program129

Fig. K-16 Create a CARVE shortcut for a specific mission...............................129

Fig. K-17 Naming the new CARVE shortcut with the specific mission map130
Fig. L-1 CARVE waypoint options ...132

Fig. L-2 How to add navigation waypoints..133

Fig. L-3 How to customize dynamic waypoint actions133

Fig. L-4 How to use the Stop waypoint action ..134

Fig. L-5 How to use the SetSpeed waypoint action ...134

Fig. L-6 How to stop adding waypoints ...135

Fig. L-7 How to adjust waypoints ..135

Fig. L-8 How to adjust waypoint actions ...136

Fig. L-9 How to close waypoint edit menu ..136

Fig. L-10 How to save waypoints ..137

Fig. L-11 Set up automatic loading of waypoints in the CARVE shortcut
properties..138

Fig. M-1 Select the Vehicle Operations submenu to set up the task140

Approved for public release; distribution is unlimited.

x

Fig. M-2 Open radar menu ..140

Fig. M-3 Radar Run Setup Screen GUI ..141

Fig. M-4 Radar Path Creation Screen GUI ...142

Fig. M-5 Sample data output of radar paths ..143

Approved for public release; distribution is unlimited.

xi

Acknowledgments

This research was supported in part by an appointment to the US Army Research
Postdoctoral Fellowship Program administered by the Oak Ridge Associated
Universities through a cooperative agreement with the US Army Research
Laboratory (ARL). Research was sponsored by ARL and was accomplished under
Cooperative Agreement Number W911-NF-12-2-0019.

We would like to acknowledge Dave Wagner, formerly with General Dynamic
Robotic Systems, for his work on the development of the Robotic Interactive
Visualization and Experimentation Technology (RIVET) platform and technical
support. We would also like to thank Eric Avery of ARL’s Human Research and
Engineering Directorate (HRED) for his assistance in adapting the CARVE
software, and Tom Smith (HRED) for his support.

Approved for public release; distribution is unlimited.

xii

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

1

1. Summary

This technical report outlines the capabilities of Robotic Interactive Visualization
Experimentation Technology (RIVET), a computer-based simulation environment,
as a Human Factors platform for human-in-the-loop (HITL) human-robot
interaction (HRI) experimentation. This system was originally designed by the US
Army Research Laboratory’s (ARL) Robotics Collaborative Technology Alliance
(ARL 2012). The purpose for the simulation tool was to provide engineers with a
means to test and debug intelligence and perception algorithms for autonomous
unmanned vehicles prior to field exercises. Here, we have adapted the software to
allow users to work cooperatively with unmanned systems to address the human
element of HRI. HRI experimentation using simulation supports the capability to
assess performance, individual differences, preferences, concerns, and potential
issues that may directly or indirectly impact the design of the system for multiple
future Soldier-robot teaming operations. This report provides a primer for the
nonprogrammer with example TorqueScript files and step-by-step instructions to
develop virtual environments (VEs) for HRI experimentation. Additional
recommendations for subjective and objective human data collection tools related
to HRI are discussed.

2. Introduction

ARL’s Intelligent Systems Enterprise vision is to enable the teaming of
autonomous intelligent systems with Soldiers in dynamic, unstructured combat
environments, as well as in noncombat military installations and base operations.
To accomplish this vision for interdependent Soldier-robot teaming, there has been
a paradigm shift in robotic research conducted by ARL from the current
instantiation of fielded remote-controlled or teleoperated robots to systems with
increased intelligence, decision-making capability, and autonomy (Groom 2008;
Chen and Terrence 2009; Phillips et al. 2011; Schaefer 2013). This type of teaming
is needed for future joint, interdependent, network-enabled operations.

While the technological capabilities of robotic systems are advancing by the day,
many of these new systems are still in the early stages of research and development.
In many cases, areas of need or potential use have been identified, preliminary
requirements have been created, and engineering solutions for prototype systems
have been researched. However, the human element must be considered early on in
this design process, because without considering human factors, such as human-
system interfaces, performance, as well as trust and expectation, the potential result

Approved for public release; distribution is unlimited.

2

will lead to limited or inappropriate use of the system (Parasuraman and Riley 1997;
Lee and See 2004).

Computer-based simulation provides a safe, economical, and efficient means to
assess HRI throughout the robot life cycle. The following sections of the
introduction include a brief overview of HRI and HRI metrics, a description of how
HRI can be included into robotic technology research and development, and an
overview of the benefits of using simulation for HRI experimentation. This will
then lead to a description and main purpose of this report: how to use the RIVET
computer-based simulation system for HRI experimentation. A primer for the
nonprogrammer with example TorqueScript files and step-by-step instructions to
develop the VE is provided in the appendixes.

2.1 Human-Robot Interaction

HRI is “a field of study dedicated to understanding, designing, and evaluating
robotic systems for use by or with humans” (Goodrich and Schultz 2007). The study
of HRI is a relatively new field (emerging in the mid-1990s), but one that is gaining
traction because of the increase of robotic technology in both the public and
government, particularly defense applications. As with any new field of study,
researchers are still developing a common understanding of metrics and evaluation
techniques. Many different researchers have attempted to develop a common
ground for understanding and measuring HRI, each of which has provided some
additional insight into this problem. However, specific lines of research have taken
specific perspectives to experimentation as a means to obtain generalizable
knowledge. A problem with this type of methodology is that it results in context-
specific or task-specific findings that may or may not be generalizable to other
domains or applications. In addition, a number of measurement techniques exist,
including self-report measures, behavioral measures, task performance, and
psychophysiological measures (Bethel et al. 2007). Each type of measurement has
its own unique benefits and limitations. In the following paragraphs, we briefly
reference some key findings that may be helpful as researchers seek to better
incorporate HRI assessment into computer-based simulation research.

We begin by highlighting the work by Steinfeld et al. (2006), which attempts to
identify metrics that can be used across robot domains and applications. They
suggest the importance of clearly identifying what they call the “task-oriented”
requirements, instead of the “task-specific” requirements. This publication is a
well-recognized description of common metrics for HRI. The common task-
oriented metrics identified in this work include navigation, perception,

Approved for public release; distribution is unlimited.

3

management, manipulation, and social interaction. The following bullets list the
associated measureable items for each metric.

• Navigation throughout the environment: effectiveness (percent of tasks
complete, deviation from planned route, and number of obstacles avoided);
efficiency (time to complete task, operator time for task, and average time
for obstacle extraction); and workload (the number of interventions by the
user);

• Perception about objects in the environment based on sensor input:
detection measures; recognition measures, such as classification; judgments
about the distance, size, or length of the environment; estimates of absolute
and relative motion;

• Management of the actions of humans and robots: fan out; intervention
response time; level of autonomy discrepancies;

• Manipulation of the robot interacting with the environment, such as
grasping, pushing, or payload drop-off: degree of mental computations and
contact errors; and

• Social interaction: interaction characteristics; persuasiveness of the robot;
trust; engagement; compliance.

Goodrich and Schultz (2007) identified key challenges specific to uncertainty
related to unstructured and extreme environments; risk to people due to their
proximity and vulnerability in the interaction; the integration of appropriate social
and emotional aspects of interaction; and issues with integrating natural language
into human-robot communication paradigms. They identified multiple design-
based attributes that can affect the interaction of humans with robots. These
included the following:

• The level and behavior of autonomy: neglect tolerance;

• Nature of information exchanged: interaction time, mental workload,
situation awareness, common ground;

• Structure of the team: fan-out, role of the team;

• Adaptation, learning, and training of people and the robot; and

• Task-shaping: goal-directed task analyses, cognitive work analyses, and
ethnographic studies.

Approved for public release; distribution is unlimited.

4

More recently, Weiss et al. (2009) took a social approach and developed an
evaluation framework for measuring HRI. This framework focuses on the usability
(e.g., effectiveness, efficiency, learnability), social acceptance (e.g., performance
expectations, effort expectancy, attitudes toward the technology), user experience,
and societal impact (e.g., consequences to the social life of a specific community
following the introduction of a robot).

As robotic design continues to move toward interactive collaborative teaming with
people, additional HRI metrics have emerged. These first specify the importance of
communication, highlighting specific elements that can be measured from the
human. For example, analyzing speech and gesture patterns can be used to identify
goal inference, anticipatory action selection, and congruence of information (Bicho
et al. 2010). This type of analysis may also benefit from identifying speech-based
interaction in terms of both action-only speech versus action speech with a
descriptor. Cassenti et al. (2011) found that people were more successful in
directing robots during a navigation task if location labels (e.g., structural parts of
a building) were used and understood by the robot. A second recent area of study
associated with HRI metrics has identified the importance of measuring situation
awareness. This can be accomplished by assessing the stages of information
processing (i.e., information acquisition, decision making, and action
implementation), control allocation, attentional control, multitasking, and task
switching (Chen and Barnes 2014).

Most recently, Murphy and Schreckenghost (2013) reviewed 29 papers regarding
metrics associated with HRI. They reported that this is an area still being developed
and understood. Their key findings related to the human-robot team or system are
reported as follows:

• Productivity (effectiveness): team productivity, task difficulty, and time
(autonomous versus manual operations)

• Efficiency: amount of effort, human-robot ratio, interaction, ratio of
operator time to robot time, and total time to complete task

• Reliability: false alarms, flexibility, interventions, level of automation
discrepancies, similarity, and time (intervention response time, unscheduled
manual operations)

• Safety: risk to people, robot awareness of people

• Coactivity: cognitive interaction, crypsis coefficient, degree of
monotonicity, neglect tolerance, plan state, percent of requests from
operator and robot, task allocation, and time in unscheduled manual
operations

Approved for public release; distribution is unlimited.

5

As can be seen by this brief review of the HRI domain, there is a direct interplay
between use and design that should be further explored and understood. In the
following subsection we begin to address the importance of including HRI into
simulation.

2.2 HRI and Computer-Based Simulation

According to Dautenhahn (2007), incorporating HRI evaluation into the robot’s
design and development process has a number of challenges that stem from
integrating an interdisciplinary approach with technological design. However,
taking the human into consideration throughout this process may help to alleviate
previously established issues related to nonuse, misuse, disuse, or abuse of
developed systems (Parasuraman and Riley 1997), leading to a greater return on
investment. Additionally, HITL research and development becomes progressively
more important as robots continue to move into an integrated team member role.

Simulation provides the opportunity for collaboration between Soldiers and
unmanned platforms at multiple levels in the design process. This can help to guide
the design process and provide needed information back into development. The
inclusion of simulation into the design process is not a new concept. For example,
simulation is a cost-effective strategy often used throughout the entire life cycle of
software development to identify real-time performance shortfalls and to develop
risk-resolution techniques (Boehm 1988). Here we suggest that the modeling and
simulation process is important for the study of human and robot interaction. Loper
(2015) describes the modeling and simulation process in the following steps:

• Establish purpose and scope: problem statement

• Formulate a conceptual model: abstraction of the real-world system under
investigation, goals

• Acquire and analyze data: requirements gathering

• Develop simulation model and program: operational model and computer
implementation

• Verify and validate model and simulation: accuracy of conceptual model,
requirements, and representation of the real-world

• Design experiments with specific details: length, number of
runs/replications, manner of initialization (e.g., training)

• Execute simulation and analyze output: estimate measures of performance,
and update analysis and design elements

Approved for public release; distribution is unlimited.

6

For the purposes of this work, we are focusing on virtual or computer-based
simulation. More specifically, we are interested in the benefits of HITL simulation
at the research and development stages. While one key benefit of simulation is rapid
and systematic development and assessment of technology, the process by which a
human uses or understands the benefits of the technology can directly impact the
process by which a system will be used in the future. Here, we suggest that
incorporating HITL simulation experimentation early on in the research and
development process can benefit the analysis, design, and development stages for
robotic technology.

Computer-based simulation has become an important part of HITL
experimentation, and provides a number of benefits, primarily those related to cost
and safety across a number of applications areas. More recently, this type of
experimentation has been used to assess HRI. Types and uses for simulation include
prototype design and development (e.g., algorithm testing, sensor design, and
control interfaces), training and practice interacting with robotic systems, and
transitions to real-world robotics.

Within HRI, benefits of simulation include time and cost benefits due to rapid and
repeatable assessment of HRI. The recommendation for simulation use for HRI
experimentation took root in the 1980s with Sheridan’s (1986) research into the
human’s supervisory control of robotic space systems. While he recommended that
both computer simulation and hardware prototype development are needed for
design and development, a key benefit of simulation is time due to the quick and
systematic adaptations of the robotic system. In the following decade, research
demonstrated cost-related benefits through a reduction in development time and
required financial need. For example, Michel (1998) demonstrated this cost benefit
through the development of the Webots simulator for robotic prototype
development. This simulator allowed for the successful design of the mechanical
structure of robots, as well as the development of intelligent controllers. The
success of this approach was attributable to the rapid and repeated testing that was
not possible with real-world systems. In addition, the scarcity and expense of real-
world robotic systems also made simulation a viable option to test human
perception, situation awareness, and teamwork, as seen with unmanned search and
rescue robots (Nourbakhsh et al. 2005; Lewis et al. 2007).

Approved for public release; distribution is unlimited.

7

The medical robotics community has identified some training benefits of
integrating HRI principles into simulation systems. In a review of the research,
Kunkler (2006) suggested that the similarities between computer simulation tools
and robotic surgery systems (e.g., mechanized feedback, monitors to visualize task,
and similar computer software for HRI) provided successful training opportunities
for physicians, while maintaining personal and patient safety. In addition,
Basdogan et al. (2004) suggested that the inclusion of haptic interfaces, rendering,
and recording, as well as playback options into the computer simulation, can
significantly improve training transfer to real-world robotic systems.

This goal of successful transfer from simulation to real-world HRI is a common
theme across all domains of robotics. One common practice is the development of
compatible source codes (e.g., robot motion [Davies 2000] and Webots [Michel
1998]). For example, in their research comparing a virtual and real-world Pioneer
robot, Gerkey et al. (2003) suggested that while there is no guarantee for direct
comparability between simulation and real-world robotic systems, there is promise
of such transfer when testing new sensors or control interfaces prior to hardware
development.

3. RIVET and CARVE for HRI Experimentation

Simulation has opened the door to understand and assess the human, as well as
components of the interaction, early on in the design process. This allows
researchers and roboticists to begin to assess the interaction-specific design
elements proactively rather than retroactively. Many HRI studies have begun to
rely on simulation for some element of experimentation. Many platforms are used
to assess interaction with algorithms, such as planning algorithms (Sycara and
Lewis 2003) and for testing human preferences and behaviors toward sensors
(Hughes and Lewis 2004). Simulation is also used to study elements of
communication with robots, including haptics (Her and Hsu 2001), semantic maps
(Nielsen et al. 2004), and bidirectional communication (Rickheit and Wachsmuth
2008). Individual differences and elements of teaming have also been studied using
simulation. These include topics such as workload and situation awareness
(Parasuraman et al. 2003), as well as control of multiple robots (Olsen and Wood
2004; Chen et al. 2010). HRI-oriented simulation should also “accurately [reflect]
the range of available information, behavior, and user experience encountered in
actual robot operation” (Lewis et al. 2007, 101).

Approved for public release; distribution is unlimited.

8

3.1 Overview of RIVET

In this section, we provide an overview of the Robotic Interactive Visualization and
Experimentation Technology (RIVET) simulation environment. RIVET version
1.0 was built using the Torque Game Engine (TGE) version 1.5.2, designed by
GarageGames. It was designed by the ARL’s Robotics Collaborative Technology
Alliance (RCTA) to allow engineers to test and debug intelligence and perception
algorithms for autonomous unmanned vehicles prior to field exercises (ARL 2012).
While field exercises provide a valuable insight on the performance of mobility and
perception algorithms, the amount of time needed for field exercises must be used
wisely. The cost to conduct data collection and testing in the field is substantially
more than time spent in the lab conducting testing. This cost not only includes a
financial cost, but also a time-associated cost in that it is difficult to organize and
coordinate multidisciplinary integration sessions. Simulation tools like RIVET can
provide an essential initial evaluation of robotic algorithms and concepts in
simulated environments that can be varied systematically.

While RIVET was originally designed to test and debug algorithms, the design and
capabilities of the software lend themselves to the development of HRI-specific
missions with unmanned ground vehicles (UGVs), which is the focus of the
remainder of this report. RIVET provides the underpinning for autonomous
movement that allows experimentation regarding the interaction of Soldiers and
these highly technical mobile vehicles. The following sections describe the
extensive effort allocated to the adaptation and advancement of RIVET to be used
for HRI experimentation purposes.

3.1.1 General Capabilities

Like most commercial off-the-shelf game engines, the TGE provides functionality
for graphics, physics, artificial intelligence, lighting, and many other features. It
provides all the necessary attributes and core functionality to conduct virtual
experiments. Building a simulated environment involves several different activities
necessary for HRI experimentation: 1) creating the virtual terrain surface, 2) adding
static features typically found in the scene, 3) adding dynamic elements, such as
people and vehicles, 4) producing the interactive graphical user interfaces (GUIs),
5) choosing the unmanned platform for the exercise, 6) implementing a user
interface for the UGV, and finally, 7) assessing the user during a study. Specifics
relating to each of these will be discussed in detail in Section 4 (Procedures for
Using RIVET and HRI Experimentation).

Approved for public release; distribution is unlimited.

9

3.1.2 Hardware/Software Considerations

The game engine adopts a client-server architecture. This is because it is designed
for networking multiple systems together to play a game between multiple remote-
located users. However, RIVET can be used in single-user mode or multi-user
mode depending on the problem statement and research goals. In single-user mode,
RIVET loads the scene and then a user is able to access the world editor, GUI editor,
or control an avatar (Soldier, vehicle, etc.) through the mission area using keyboard
or joystick. Multi-user mode allows up to 64 local area networked users to join the
mission as clients. These clients can be another vehicle, robot, Soldier, or a sensor
that is attached to an entity in the simulation. Currently, the choice of additional
vehicle sensors within RIVET are cameras, laser detection and ranging (LADAR),
and a custom interface used to connect other applications to the simulation
environment. Sensors can be local to the initial server client machine or they can
be a remote sensor as a client on a different machine. The key to determining which
is right for the mission depends on the angle of view for the sensor. The local sensor
view is what the server camera is projecting. If a different camera sensor view is
needed, a separate computer running as a client will be used to connect to the
vehicle, and then that graphics processor unit is used to develop the sensor scene
(e.g., rear-view camera for traveling in reverse). General specifications relating to
the quality of the computers, graphics cards, etc. can be found in the RIVET
Developer’s Guide (General Dynamics Robotics Systems 2010, 17).

3.1.3 RIVET Menu Options

Through the RIVET main menu (Fig. 1), there are customization options that are
available through buttons at the bottom of the menu screen. It is possible to load a
customized user mission (Server computer), join a mission (Client computer), or
mount a sensor to a vehicle or robot on the RIVET server computer (Client
computer). In addition, the configuration menu allows customization of the video
screen size, resolution, and vehicles. Appendix A provides more RIVET menu
options.

Approved for public release; distribution is unlimited.

10

Fig. 1 RIVET Main Menu GUI

For a majority of our HRI-related research, we need to have more human interaction
with the robot/autonomous vehicle than observing a camera sensor only. Therefore,
the recommended setup is the 3-computer setup with the RIVET server, the
additional client sensor, and the user interface application for extra control and
integration of the UGV. The RIVET architecture also allows for the connection of
outside applications by mounting a Basic Operations Layer Transmissions (BOLT)
sensor to the vehicle. The BOLT libraries allow external interfaces to connect with
the simulation (more information can be found in the Application Program
Interface, which is included with the software). One such application is the Control
for Autonomous Robotic Vehicle Experiments (CARVE) user interface application
(discussed in detail in Section 3.2). The Server, Client, and CARVE Application
computers are connected through an Ethernet local area network (LAN), using a
Gigabit switch (Fig. 2).

Approved for public release; distribution is unlimited.

11

Fig. 2 RIVET and CARVE setup for single user, remote sensor, or GUI combination

3.2 Overview of CARVE

CARVE is written in C Sharp (C#), allowing the use of all of the Microsoft .NET
libraries. As its name implies, additional robotic vehicle control is the main
functionality of CARVE. For example, CARVE provides customizable integration
of new user interface controls for the simulated vehicle, as well as feedback
displays to the participant. There was additional work completed to utilize CARVE
as an autonomous driving station for human use experiments. This included the
capability to mirror autonomous vehicle behavior through the integration of
dynamic waypoints (in CARVE) and trigger points (in RIVET). Both RIVET and
CARVE are customizable in terms of recording data from the vehicle (speed,
health, time, location, etc.), environment (non-player character movement, triggers,
and events), as well as user input (function allocation, time, number of
interventions). Finally, CARVE provides additional capabilities and
customizations to the RIVET platform to advance HRI experimentation, including
visual feedback of vehicle statistics, dynamic map capabilities, and the inclusion of
additional tasks (e.g., radar detection task). This added functionality and control is
depicted in Fig. 3 and allows HRI assessment to occur early in development.
Examples of the CARVE menus are provided in Appendix B.

Approved for public release; distribution is unlimited.

12

Fig. 3 Customizable simulation environment for HRI (RIVET, BOLT, CARVE)

Additional descriptions and capabilities of this software, as well as specific
modifications for HRI experimentation, will be discussed through Section 4
(Procedures for Using RIVET for HRI Experimentation). We note here that
CARVE may not be currently set up to meet every possible need for HRI
experimentation; however, additional user interfaces can be programmed to
function within CARVE. This may require more advanced knowledge of computer
programming, specifically in C#.

4. Procedures for Using RIVET for HRI Experimentation

The design and development of RIVET, and the associated CARVE application,
are valuable tools for HRI experimentation. In this section, we provide key
descriptions of the components and customization capabilities of this simulation
system. As such, RIVET and CARVE can have a wide range of HRI operations,
from combat-specific operations (e.g., surveillance, cordon, and search) to base
operations (e.g., passenger transit using a self-driving vehicle). However, different
types of customization require varying levels of computer programming
knowledge, which are noted throughout the following sections. Step-by-step
directions for using RIVET are then provided in the appendixes.

4.1 Initial Research Definition

Before starting the mission setup, the HRI experimenter should have a research
question, a set of robot system requirements, and an application. Based on this
information, it is beneficial to create a storyboard of the scenario or use case (Preece
et al. 2015). This will help the experimenter outline the necessary elements that will
be needed in the development of the VE. This may include the location (e.g., Middle

Approved for public release; distribution is unlimited.

13

Eastern town versus US military post), terrain and weather specifications, potential
risks, stationary and dynamic objects, anticipated or actual robot capabilities and
behaviors, as well as the team goals and objectives. Directions on how to create a
new mission environment are provided in Appendix C.

4.2 Setting up the Mission

4.2.1 Virtual Terrain

The first step in developing the VE in RIVET is to build the virtual terrain. The
current setup and components of RIVET are such that a user with a basic computer
science background has sufficient knowledge to develop the virtual terrain. When
starting to develop a new virtual terrain, we first recommend exploring the missions
that already exist in RIVET. Available mission files can be accessed through the
Main Menu (Fig. 4) by choosing a file from the Loading Mission screen (Fig. 5).
This will allow HRI experimenters the opportunity to see what environments have
already been built and could be leveraged for their needs.

Fig. 4 Main Menu screen

Approved for public release; distribution is unlimited.

14

Note: The red box highlights the areas related to current default missions that have been

previously created.

Fig. 5 Load Mission screen

It is possible that none of the available mission environments are a direct match for
the current research goal. If this is the case, it is still possible to begin with a base
environment and customize it to meet the specific needs of the mission. The ARL
Test World is a recommended option to start to develop a new mission file. It has a
relatively blank canvas, containing only a Soldier following a path and a small
building. After entering the VE, it is possible to adapt the terrain to match the needs
of the mission. The terrain is sculpted using the RIVET terrain editor tools. These
tools permit changes in the appearance of the terrain using different textures that
represent rocks, gravel, grass, dirt, or the forest floor. Instructions for adapting the
terrain are provided in Appendix D. More artistic models, such as grass and trees,
are also available by adding static objects.

4.2.2 Static Objects

The TGE allows the programmer to create realistic simulated terrains that can be
textured and shaped to give an appearance of any setting desired. To illustrate the
complexity that can be created with the editing tool, Fig. 6 shows a virtual Middle
Eastern market place with streets, stalls, and buildings. Each one of these items
must be carefully positioned to reflect a marketplace in a developing country.
Depending on complexity, a scene may contain hundreds or thousands of objects.
Making a scene look professional may require a lot of work and time, but the
realism may aid testing and the capability to transition findings to the field.

Approved for public release; distribution is unlimited.

15

Fig. 6 Complex world building

The TGE has built-in tools that allow the programmer the ability to tailor the scene.
The World Editor is accessed by pressing the F11 key on the keyboard. Figure 7
shows the marketplace objects augmented with entity names shown in white. In this
view, each yellow dot represents a different object, such as a building, burned-out
car, and even the electrical lines. This is where objects can be added, deleted, or
moved along each axis (see also Appendix E). Each object may also be rotated in
any direction along each axis. Notice that many of the objects are tagged with the
“null” label. This means that the object has not been assigned a specific name
during the creation of the scene. Naming each object is possible through the
TorqueScript files, the console, or the World Editor Inspector. The purpose of the
World Editor Inspector is to allow the evaluator to inspect and modify parameters
for individual objects. This is where the position, rotation, scale, name, and many
different dynamic fields can be changed. These tools are essential to building a
realistic environment.

Approved for public release; distribution is unlimited.

16

Fig. 7 Example of the view from the World Editor Inspector

All objects within the scene are defined in a mission file, which is saved as a text
file. Each object is listed along with its respective parameters. A static object is
defined in the mission file as shown in Fig. 8.

Fig. 8 Example TorqueScript for a static object located within the Mission File

4.2.3 Dynamic Objects: Vehicles

There are many assets developed for use within the simulation (Fig. 9). The vehicles
can move about using direct user control through keyboard or joystick, script-based
path following, or file-based waypoint following using either time on target or
locations and velocity data. The unmanned vehicles consist of entities from the
following classes:

• Unmanned ground vehicles

• Unmanned air vehicles

• Unmanned surface vehicles

Approved for public release; distribution is unlimited.

17

• Unmanned underwater vehicles

• Small unmanned ground vehicles

Fig. 9 Examples of unmanned systems available within RIVET

Specific missions may also require additional non-player vehicles to have
preprogrammed movements throughout the mission space. Here, the term non-
player is included to differentiate between vehicles that will be autonomously
moving in the VE from player vehicles that a participant has an option to control.
The current version of RIVET has some path-following vehicles already available
(Fig. 10). It is important to note that these dynamic elements used in a scenario
require code to control their actions. Animations are created within modeling tools
such as Autodesk 3ds Max, and controlled with script to allow movement of
objects. TGE uses a scripting language, aptly named TorqueScript, to provide the
control of these dynamic elements. It is beyond the scope of this report to provide
an in-depth discussion of TorqueScript. The works of Maurina (2006) and Finney
(2007) provide more information.

Approved for public release; distribution is unlimited.

18

Fig. 10 Examples of path-following vehicles in RIVET

Step-by-step directions on adding a path and a path-following vehicle to the mission
file are available in Appendix F and Appendix G, respectively. With these
directions, the vehicle will appear by default when the mission file is opened. The
vehicle will continue on the path provided. If the mission file is saved, the vehicle
will begin at the last saved point the next time the mission file is opened.

4.2.4 Dynamic Objects: People

Human characters are commanded using direct user control, scripted path
following, or crowd logic. Similar to the above descriptions on path-following
vehicles, it is also possible to have path-following people, also referred to as non-
player characters, or NPCs. These NPCs currently include civilians, Soldiers, and
enemy combatant characters. It is also possible to trigger the NPC to spawn (also
known as the creation or appearance of a character) on the path at a set point in
time, as well as trigger the NPC to disappear at a set time and location. A trigger is
“a volume of space that initiates script callbacks when an object enters, stays inside,
or leaves the trigger’s volume” (http://docs.garagegames.com/torque-
3d/reference/classTrigger.html#_details). More specifically, a trigger causes an
event to happen. Having the option to create or delete the NPC allows the
experimenter more flexibility and consistency between runs or trials. However, this
requires additional computer programming, as well as additional TorqueScript
files. Step-by-step examples, including the triggers to create and delete path-
following Soldiers are provided in Appendix H and Appendix I, respectively.

At times, it is more beneficial to use the crowd logic than to create multiple paths
for many individuals. Figure 11 shows a flurry of activity among Soldiers and
civilians. These crowds were generated using the Crowd Editor, a tool designed to
add groups of simulated NPCs to specified regions of the VE. Within this region,
the people move, interact, and mill about simulating a realistic marketplace.
Directions for adding crowds are provided in Appendix J.

Approved for public release; distribution is unlimited.

19

Fig. 11 Example of crowd modeling in RIVET

The RIVET Crowd Editor is a C# application that allows a user to add groups of
NPCs to a mission through a GUI. The GUI allows for configuring, adjusting, and
controlling these simulated crowds. The editor is used to add crowd entities with a
specific number of objects, their type, and the percentage of each character type.
The editor also has the feature where the user chooses the number of destinations
and how long the NPCs are idle once they reach their destination. The Crowd Editor
GUI is shown in Fig. 12.

Fig. 12 Crowd Editor GUI in RIVET

[1] Map View shows all the
visual crowd data that is being
applied to the selected map.
[2] Add and Remove is used to
add and name a crowd as well as
to delete it.
[3] Crowd List provides a list of
all the crowds created for the
selected map.
[4] Property View enables you
to configure and edit all the
aspects for the specific crowd
selected from the Crowd List.
[5] Description Window shows
a description of the selected
property in the Property View.
[6] Tool Box supplies all the tools
used to create and generate the

crowd.
[7] Menu allows user to load a
map, load crowds, or save a
mission.

Approved for public release; distribution is unlimited.

20

4.3 Robot Autonomy

Up until this point, options and modifications that are specific to RIVET have been
described. However, scenarios using advanced vehicle or robot autonomy require
the integration of the BOLT sensor and the CARVE application. Since missions
can require a user to intervene and “drive” a vehicle, it was important to devise a
way to communicate with the vehicle in the simulation. The BOLT interface was
developed to allow communication over the network. The User Datagram
Protocol/Internet Protocol (UDP/IP) is used for communication outside of the
application. The BoltPMmount code in the game engine allows access through
UDP/IP. The BOLT code allows the CARVE GUI to communicate through to the
game engine. Commands are sent from the GUI to the vehicle, directing movements
based on inputs from the code, keyboard, joystick, or steering wheel.

The platform mobility code provides access to the vehicle information while the
BOLT sensor provides access to the camera buffers. The configuration menu on the
RIVET startup screen allows for construction of vehicles, as well as sensors. To
use a vehicle in the application, a vehicle is first selected, named, and then sensors
are added. A separate computer running RIVET can mount a BOLT sensor to
connect to the server computer. With a vehicle properly configured with BOLT, the
CARVE application is able to connect to RIVET. Directions on how to connect to
CARVE are provided in Appendix K.

4.3.1 Teleoperation, Remote Control, Manual Control

CARVE is designed to work with a number of controllers, which provides increased
flexibility in the experimental design. Adapting the CARVE program code to set
the controllers may require a more in-depth understanding of computer
programming. However, it is possible to customize a variety of controllers,
including the following: keyboard, mouse, touch screen GUI, Logitech Gamepad,
Logitech joystick, Logitech G27 wheel and pedals, Microsoft Kinect, and other user
interfaces (e.g., engage/disengage buttons).

The original controllers available for use with CARVE were the keyboard and
mouse, a Logitech gamepad, and a touch screen track ball. The keyboard and mouse
controls were designed to mirror the user interface and key commands described in
the RIVET Developer’s Guide (General Dynamics Robotic Systems 2010, 48). The
Logitech gamepad controls were designed to provide additional fidelity for
interaction with a vehicle. In addition, each button is programmable, and can be
used for dual-task experimentation. Figure 13 provides a visual representation for
the current Logitech setup.

Approved for public release; distribution is unlimited.

21

Fig. 13 Logitech gamepad controller current button layout

The touch screen track ball controls for speed and movement are directly on the
CARVE application screen (Fig. 14). This controller interface is very similar to a
joystick. The user will move the circular thumb pad to drive the vehicle in the
direction the center ball is moved. The farther from center the ball moves, the faster
the speed at which the vehicle moves.

Note: The red text and outline are of buttons are used here to demonstrate key parts of the GUI for

demonstration purposes only. They are not part of the actual GUI.

Fig. 14 Touch screen track ball for driving controls

Approved for public release; distribution is unlimited.

22

To meet the diverse needs for a variety of experiments, CARVE has been updated
with the capabilities to use the Microsoft Kinect sensor, the Logitech G27 Racing
Wheel and Pedals, as well as additional engineered controllers (e.g., button
activation controls). These additional user inputs allow for more experimental
control.

The Kinect sensor is a low-cost (~$150) video and depth sensor with an open source
software development kit that allows developers to use the device for gesture input,
as well as spoken language (Fig. 15).

Fig. 15 Microsoft Kinect sensor

To update the CARVE for manual and autonomous self-driving vehicle
capabilities, controls for the Logitech G27 Racing Wheel were also added to the
CARVE software. The current functionality allows for full manual control driving.
In addition, an automation button system was built and programmed to engage and
disengage the vehicle’s automation. These controllers, when used together, allow a
user to switch between autonomous self-driving vehicle control and manual control
(Fig. 16).

Approved for public release; distribution is unlimited.

23

Fig. 16 Logitech G27 racing wheel and pedals, and additional button controls

4.3.2 Waypoint Following

CARVE was designed to integrate waypoint following to give the vehicle a level
of semi-autonomy for navigation (Fig. 17). Here, waypoints are markers,
represented by an orange circle, that are placed in set locations for path planning
(navigation) prior to the start of a mission. Using waypoint following allows the
user to conduct additional tasks such as watching a video stream or watching a radar
screen for potential enemies. Waypoint paths are created on the map screen (Fig.
17) using the Add Waypoint button [A]. Each click adds an additional waypoint to
the path. The entire path can be deleted using the Delete button [B]. Once a path is
complete the Change button [C] is used to adjust waypoints on the screen.

Approved for public release; distribution is unlimited.

24

Fig. 17 Waypoint following in CARVE

4.3.3 Autonomous Capabilities

While the original waypoint-following capabilities mirrored real-world semi-
autonomous navigation through the placement of different waypoints, it was
important to advance the capabilities of the system to include a customizable
control system. For this purpose, dynamic capabilities were added to the waypoints
(Fig. 18). Step-by-step directions for setting dynamic waypoints are included in
Appendix L.

Fig. 18 Options for dynamic waypoints in CARVE

Approved for public release; distribution is unlimited.

25

A feature that was added to the latest release of CARVE was to allow adjustment
of actions between waypoints. Upon adding a waypoint to the map, the Waypoint
Action dialog box opens and an action can be selected from the list (Fig. 19 and
Fig. 20). If “None” is selected, then the same specifications from the previous
waypoint are kept. This option can be used for “navigation only” markers. If “Stop”
is selected, then the vehicle will stop at that waypoint for the “duration” set in the
last text box. Duration time is set in milliseconds. If “Estop” is selected, the vehicle
will remain stopped until the user releases the vehicle by re-engaging the
automation through a button press. This capability allows the experimenter to set
breaks in the simulation. The “SetSpeed” selection is coupled with the “Speed”
entered. The speed is set in miles per hour (mph). Finally, the “Destination” option
functions similar to the “None” in that it provides a navigational marker. However,
it is has a different link to an output file that differentiates between these points.
Therefore, it can be used to record time stamps for specific events.

Fig. 19 Waypoint Action menu

Approved for public release; distribution is unlimited.

26

Fig. 20 Dynamic waypoints available actions

4.4 Alternative Tasks

Additional tasks that participants can complete can also be added to the CARVE
interface. These customizable tasks can be used for a dual-task paradigm or to
increase the participant’s workload. One such example is the radar task (Fig. 21).
For this task, participants will monitor the radar sensor and identify when a blip
(small colored dot) changes from yellow (target) to red (threat) by pressing a button
on the user control interface. Once the threat is identified, the blip will turn from
red to blue providing feedback to the participant that their task was recorded.
CARVE is set up to record performance on this task to a .csv file. Performance
metrics include correct detection, false alarms, misses, and detection time. This task
is also customizable to create conditions of varying workload (e.g., number of
possible targets, time between targets, speed of movement, or pattern of
movement). Instructions are provided in Appendix M.

Approved for public release; distribution is unlimited.

27

Fig. 21 Alternative radar target detection task in CARVE

4.5 Manipulating and Measuring HRI

RIVET and CARVE provide a number of customizable capabilities for
manipulating and measuring HRI. This section provides a brief review of some of
those capabilities for data collection as well as references for others. These may
include recording the behaviors of the simulated robot or virtual Soldier avatar to
determine frequency and duration of HRI, or data for use in an after-action review
(AAR). An AAR is a review of the simulation experiment after the fact, where
participants can provide opinions and feedback on their personal assessment of the
experiment. Such AAR data can supplement quantitative data collected from the
simulation and interaction. Depending on what data from the simulation or the
interface are needed, the code base can be developed to gather and export that
information to an output file through RIVET or CARVE.

RIVET has a capability of recording data from the game engine and the scene. This
is done using code in the engine to allow for Structured Query Language (SQL)
calls to capture, record, and manage data held in a relational database. For more
information on how to read, write, and append custom files, see FileIO Tutorial
(http://docs.garagegames.com/tgb/official/) or the section of the Game
Programmer’s Guide to Torque on writing and appending files Section 9.5.9
Writing and Appending Files of the Game Developer’s Guide to Programming
Torque (Maurina 2006, 370).

There are also ways of recording data using the CARVE interface. A class was
created named “WWDataLogger”, which was used to gather data from user
interaction with the experiment. In this example, all of the data is gathered and
written to a Microsoft Excel file. It records the location of the target blip, the

Approved for public release; distribution is unlimited.

28

activity (path started, enemy in zone, enemy identified, enemy misidentified, and
path completed), and a time stamp. From this, it is possible to calculate signal
detections, which are delineated as correct response, errors (misses,
misidentifications), and detection time. Data collection can also be customized to
record robot behaviors and number of interventions in the robot’s autonomy with
recording of an event, time, and associated data (e.g., duration and associated times
of button presses, type of button, as well as time and frequency between manual
and autonomous modes). This type of data collection requires more advanced
programming to create the output file (.csv or Microsoft Excel). Depending on what
data from the simulation or the interface are needed, the code base can be developed
to gather and export that information into a separate file.

Customizations to the simulation environment can be made in line with the HRI
metrics by Steinfeld et al. (2006), Goodrich and Schultz (2007), and Weiss et al.
(2009), as previously described in Section 2.1 of this report.

• Navigation of the simulated robot: The effectiveness (e.g., number of
obstacles avoided or tasks completed) and efficiency (e.g., time and
duration) related to navigation are elements that can be recorded in RIVET
(.sql), CARVE (.csv), or by hand during an experiment (e.g., pen and
paper). Participant feedback through an AAR or video analysis can be
accomplished by recording the mission run for later viewing through the
integration of additional video recording software, such as Fraps
(www.fraps.com).

• Perception from sensor data: RIVET provides simulated sensor readings
that come in the same format that a user would receive on the real robot.
Sensor data can then be run through perception algorithms to identify how
well the robot understands the world around it. Current configurations of
the simulated robot can include camera, lidar, and semantic sensors
(Gonzalez et al. 2009). The details for collecting and assessing sensor
perception data are outside the scope of this report. However, for more
information, Dean and DiBerardino (2014) provide resource material on the
integration of the Common World Model.

• Management and function allocation: Since this metric area is related to
user interfaces and control, we recommend using customizable data
recording through the CARVE application. It is possible to set the
frequency, duration, type, degree of movement, etc. for every intervention
using a user control interface to record into a .csv output file. However, this
may require more advance programming capabilities.

Approved for public release; distribution is unlimited.

29

• Manipulation: Here, manipulation is referring to how the simulated robot is
directly influencing the VE. RIVET offers some degree of manipulation
required for HRI type tasks; however, fine-grained manipulation required
by a real-world robot is nearly impossible to accurately model in this
simulation environment. This is because RIVET is built on a game engine
instead of in a high-performance computing simulation. However, assessing
HRI may not require fine-grained manipulation. Therefore, we recommend
that experimenters refer to the design guidelines and the requirements
documents of the real-world robot. Programmable animation sequences can
then be built and integrated into the VE (General Dynamics Robotic
Systems 2010, 67–232).

• Social interaction: There are a number of opportunities for manipulating
and recording social interaction within RIVET and CARVE, as well as with
obtaining feedback after the fact with an AAR. These measures include, but
are not limited to, recorded distances between people and robots,
manipulation of behaviors, communication exchanged (e.g., programmable
feedback system), programmable team roles, as well as usability, social
acceptance, and individual differences. These metrics can be recorded
through the development of customizable GUIs, programmable pauses,
recordable behaviors, and even integration of outside tools (e.g., eye
tracking).

5. Previous HRI Research Using RIVET

A number of research efforts through the RCTA have used various functionalities
of RIVET and CARVE for HRI experimentation. One of the main goals of this type
of experimentation was the advancement of robot design through the consideration
of the human or the human-robot team. As mentioned earlier in this report, the
research discussed here is in line with ARL’s Intelligent Systems Enterprise vision
that enables the teaming of autonomous, intelligent systems with Soldiers. This
section discusses experiments in both dynamic and unstructured combat
environments, as well as noncombat military installations and base operations. For
additional resources on similarities and differences between RIVET and field
experiments in general, see Bodt et al. (2010) and Schafer et al. (2015). This section
demonstrates the diversity and customizability of RIVET, which make it a valuable
platform for HRI experimentation.

Approved for public release; distribution is unlimited.

30

5.1 Cordon and Search

The cordon and search task has been used as a motivating scenario by ARL
researchers. During urban transit by a small (4–5 Soldier) unit, a fugitive is reported
to have entered a building that the unit is approaching. A human-transportable robot
is instructed to “screen the back door” of the building by the unit commander since
he cannot safely split up his limited resources (Fig. 22). While this narrative occurs
in the context of a cordon and search operation, its underlying capabilities support
a broad range of potential operational missions.

Note: OP = objective point.

Fig. 22 RCTA motivating scenario (ARL Robotics Collaborative Technology Alliance 2012)

Approved for public release; distribution is unlimited.

31

5.1.1 Target Detection: Person

In this experiment, participants monitored a Talon robot complete the cordon and
search type task to monitor the back of a building for human terrorist targets
(Schaefer 2013, 2016). A single computer (RIVET only) setup was ideal since
participants viewed the Talon robot’s camera sensor from a remote location and
were unable to directly intervene in the robot’s behavior. For the purpose of this
experiment, a single video of the simulation was created from the camera-view on
the Talon robot that showed the robot navigating to the back of a building, finding
a secure location, and monitoring the back door for human targets. The video of the
simulation was created using Fraps real-time video capture and benchmarking
program with a 30 frame/second (fps) .avi file. The .avi file was converted into the
.mp4 file format to add auditory feedback from the Talon robot in post-processing.
This allowed the experimenter to create multiple conditions from a single
simulation. Condition 1 provided a 100% reliable detection condition in which the
Talon robot provided verbal feedback (i.e., “target detected”) for all the human
targets. Condition 2 provided a 25% reliable detection condition. While auditory
feedback could have been added within RIVET, it would have required the creation
of separate mission files. Thus, use of outside software was ideal.

During development, the VE used was a previously developed base environment
named CACTF (Combined Arms Collective Training Facility). This VE was
originally developed to represent a simulated version of a real-world training facility
of an urban environment that was designed to conduct multi-echelon, full-spectrum
operations training up to battalion task force level. The base VE included the layout
of the physical environment (e.g., ground, roadways, buildings, and lighting). To
meet the needs of this mission, terrorist NPCs were created and added to RIVET
(Fig. 23). More information on creating NPCs, animations, and adding to the TGE
can be found in the RIVET Developer’s Guide (General Dynamics Robotic Systems
2010).

Approved for public release; distribution is unlimited.

32

Fig. 23 Terrorist NPCs

Additional capabilities were added to RIVET to meet the needs of this experiment.
Task-specific customization of the environment was accomplished through creation
of RIVET GUIs, as well as Scripting syntax using Torsion. Torsion is a powerful
integrated development environment for creating TorqueScript-based games and
modifications. Specific customization included entering objects, obstacles, and
creation of paths, to name a few. For customizable control of the Talon, additional
script files were included to create and set up a path-following Talon robot (see
Appendix F and Appendix G for direction on adding a path-following vehicle). This
allowed a preprogrammed path and the robot behaviors to be set before recording
the mission. This addition to RIVET has resulted in a number of vehicles (e.g.,
Humvee, taxi, KBot, Talon) with path-following capabilities that are available for
future simulation experiments.

5.1.2 Target Detection: Object

This experiment used a single-user format (one RIVET computer) and was
designed without adding any new technology or requiring any additional
TorqueScript files. For this experiment, participants monitored a computer agent
(either a Soldier avatar or a Talon robot) as they located 16 missing M16 rifles
throughout a Middle Eastern town (Sanders et al. 2012). Two videos of the

Approved for public release; distribution is unlimited.

33

simulation (one for a 100% reliable agent and one for a 25% reliable agent) were
created from the third person perspective for each agent navigating through the
environment and locating targets.

The VE used a base environment of the Middle Eastern Marketplace that already
had static and dynamic objects, and a crowd of people. To meet the needs of this
mission, a path-following Soldier and a path-following Talon robot, as well as the
missing rifles were added to the environment (Fig. 24). This allowed additional
control in navigation path and timing between the agents. The video of the
simulation was created using Fraps real-time video capture and benchmarking
program with a 30 fps .avi file. For the purposes of this work, an external
physiological measurement tool (Labscribe; iWorx, Inc.) and an eye tracker
(EyeWorks; Eyetracking, Inc.) were used to collect physiological and behavioral
data. Results are provided in Sanders et al. (2012).

Fig. 24 Example of RIVET map, targets, and avatars (Talon and Soldier)

5.1.3 Navigation

For this experiment, participants controlled a Soldier agent situated within a Middle
Eastern environment (Mid East RCTA Demo). The task was to assist an
autonomous Talon robot from a set location to a rendezvous point as quickly as
possible (Schaefer 2013, 2015). This assistance required the participant to locate
the robot and move obstacles out of the path if the robot was unable to navigate
around these obstacles. Participants completed this task with 2 different robots. The
first robot was 80% reliable in self-navigating obstacles (successfully navigated
around 4 out of the 5 potential obstacles). The second robot was only 20% reliable
(successfully navigated around one obstacle).

Due to the design of this experiment, moveable objects were needed and created by
General Dynamics Robotic Systems (GDRS) for use in RIVET. This included
syntax for a refrigerator, box, crate, barrel, and trashcan (refer to
C:\RIVET\sim.base\server\moveableobjects.cs). In addition, independent task-
specific customization of the physical environment was accomplished through
TorqueScript syntax. Specific customization included entering objects, obstacles,

Approved for public release; distribution is unlimited.

34

creation of paths, etc. Scripting files were created for both the training session and
the task conditions. The simulated tasks were recorded using Fraps real-time video
capture and benchmarking program with a 30-fps .avi file. Video was recorded
from the Soldier character’s perspective for later data analysis.

5.1.4 Transparency

Transparent bi-direction communication is an extremely important component to
effective and trusted human-robot teaming (Barnes et al. 2016; Schaefer et al.
2016). To address this HRI issue, Sanders et al. (2014) used RIVET as a single
computer architecture for a joint Soldier-robot team responsible for clearing an area
of weapons and locating civilians by marking their location on a map. The authors
did not require any additional functionality from RIVET for this task. They did,
however, integrate the RIVET simulation with E-Prime to adapt the type of
communication from the robot. This included variations in the mode of
communication from the robot (e.g., audio, text, graphics) and the amount of
information being communicated (e.g., minimal, contextual, constant).

5.2 Gunnery

A second type of combat-related mission was created in RIVET to conduct virtual
unmanned gunnery exercises. The purpose was to assess the effect of various
interface devices for robotic asset control on system operation and overall
performance. A series of gunnery exercises was created to assess the ability of the
operator to identify targets, select the appropriate weapon, and engage targets with
the handheld gamepad and Microsoft Kinect voice commands. This experimental
setup required use of the client/server architecture with the RIVET server, BOLT
client, and CARVE application. The VE in RIVET adapted the base Engineering
Test World mission to meet the needs of this type of task, including the terrain,
foliage, roadways, and targets (Fig. 25).

Approved for public release; distribution is unlimited.

35

Fig. 25 Gunnery range map

These exercises required additional components to be set up within RIVET,
including a number of targets, type of targets, the posture of the vehicle (offensive
or defensive), and the position on the range where it will take place. These data are
entered into the system using a custom GUI (Fig. 26). When using this GUI, the
data entered are added to the database using SQL calls in the script. Once the
database is updated with the exercises, the experiment can be conducted. The
exercise begins and the timings of all events that happen during that engagement
are recorded in the database for use during an AAR.

Approved for public release; distribution is unlimited.

36

Note: The GUI creation editor gives the programmer all the tools necessary to create these and other interfaces.
New controls are found in the upper left drop-down box (outlined in red), and once they are added to the canvas,
they show up in the GUI tree view (outlined in green) with their properties accessible in the inspector dialog
(outlined in blue).

Fig. 26 GUI editor: example of gunnery user interface GUI setup

5.3 Driverless Vehicle Transport

A third, and most recent, type of mission used for HRI experimentation investigated
a specific non-combat operation of driverless vehicles for passenger transit. One
example is an experiment motivated by the Autonomous Robotics for Installations
and Base Operations (ARIBO) project (Marshall 2014). The purpose of this
experiment was to build a virtual US Army post in RIVET in order to assess
behavior and performance of a person on board a self-driving vehicle prior to the
actual vehicle being developed (Schaefer and Scribner 2015). This design required
use of the client/server architecture with the RIVET server, BOLT client, and
CARVE application.

The first major need was to build the VE within RIVET (refer to Appendixes A–I).
For this design, the ARL Test World was used as the base virtual terrain. The height
of the terrain varies as seen from the mountain ranges in the background to the
mostly level terrain in the cantonments area. However, this open expanse amidst a
mountain range was sufficient for this mission environment. The ground has

Approved for public release; distribution is unlimited.

37

multiple textures including grass, dirt, and hard-packed black gravel. These were
added to the scene with the Terrain Texture editor that allows the creator to add
color and dimension to the scene. Then, the medical facilities from a US military
installation were used as a frame of reference for developing a road and sidewalk
structure, building location, parking lots, and other stationary obstacles (Fig. 27).
Many of the static objects included in this new mission were already available
within the RIVET libraries. While this means that the VE is not an exact replica of
the real environment, it does meet the requirements for the experiment and provides
the capability to include some of the key requirements (e.g., vehicle behaviors,
transportation times, number of turns) to be able to transition this experimental
design to the real world once the prototype robotic vehicle is available for further
experimentation.

Fig. 27 Virtual environment representing the medical facilities on a US Army post

In the next step after building the VE, the CARVE application was adapted in
multiple ways. First, dynamic waypoints were included (refer to Section 4.2.3) to
more accurately mirror real-world autonomous behaviors. Second, a new
controller, the Logitech G27 wheel and pedals, as well as the engage/disengage
buttons, were integrated into CARVE for realistic manual control. Third, an output
file (.csv) was created that recorded all interventions in the vehicle’s autonomy.
Finally, a number of GUIs were developed within RIVET to provide instructions
and information to the participant (e.g., notice of other passengers onboard the
vehicle, location information, and wrong-way directions).

The final step was to choose a robotic vehicle that was approximately the same size
and shape of the real-world prototype vehicle. Even though there are many different
robotic vehicles to choose from within the simulation, it is important to match the
system to the exercise. A larger vehicle was needed for this experiment, as it has to
be able to pick up and discharge passengers. Since details were not available about
the final physical design of the real-world prototype vehicle, the tactical
autonomous combat chassis (TAC-C) was used, which was previously designed by
GDRS as a simulated manned/unmanned platform with the potential for manual or
autonomous control (Fig. 28). In addition, the camera position was moved to be

Approved for public release; distribution is unlimited.

38

located at the “driver” position of the vehicle, so very little of the vehicle was
actually seen by the participant. Additional information on this set of experiments
is currently available in Schaefer and Scribner (2015) and will be available in
additional ARL technical reports.

Note: The TAC-C was used because of its size (height and width), as well as the functionality of
the animation sequences. Originally, the vehicle had a turret and other associated weaponry (left).
Once the graphics of the turret and other weaponry were removed, the functionality to scan right
to left as well as up and down was still there (right). We used this functionality to represent
someone turning their head to look around for oncoming traffic or environmental obstacles.

Fig. 28 Customizations to the TAC-C

6. Discussion

This report provides an introduction to developing and advancing RIVET
simulation and the associated CARVE application to meet the needs for HRI
experimentation. Overall, the capability for customization from the user control
interface to the sensor and autonomy integration and on to the integration of a user
feedback interface make the RIVET simulation system a valuable resource to
understanding the needs of a variety of current and future HRI (Section 5). Further,
step-by-step instructions are provided for future researchers to set up and use
RIVET (Appendixes A–M). This section provides some remaining lessons learned
while updating the RIVET system, as well as additional resource guides.

6.1 Lessons Learned

This section addresses some of the solutions to problem areas found while
developing and advancing RIVET and the associated CARVE application.

Approved for public release; distribution is unlimited.

39

6.1.1 Problem No. 1: CARVE Does Not Always Load Correctly

If CARVE does not load, gives an error, or shuts down, then first check the
connectivity to make sure the CARVE computer is receiving signals from both the
RIVET server and the BOLT client computers (Appendix B, Figs. B-1 and B-2). It
is good practice to look at the connectivity prior to loading CARVE to check that
CARVE is set up to connect to the RIVET and BOLT IP addresses through the
Ethernet LAN.

The second check is the RIVET server machine. When using the 3-computer setup
(RIVET, BOLT, CARVE), it is vital to choose a vehicle that has a BOLT sensor
attachment. Otherwise, the BOLT sensor on the client machine and the CARVE
application will not connect. If the correct vehicle was chosen, then check the
BOLT client machine. Double-check to see that the name is set to User 1, the name
of the vehicle. This name is what allows the BOLT sensor to attach to the vehicle.

If there are still issues connecting to the CARVE application, the final thing to
check is the map. CARVE requires the map of the VE from RIVET to function
appropriately. The optimal sizing for the map is 1600 × 1600 pixels and less than 2
MB in size. External programs can be used to reduce the size of the .png file (e.g.,
Adobe Fireworks). Directions for creating a map are provided in Appendix B.

6.1.2 Problem No. 2: CARVE Takes Too Long to Load

CARVE can take upwards of a minute to initially load the application, because it is
pulling the mission map from RIVET every time it is initialized. When conducting
multiple trials, this time delay can add up to a great deal of wait time. However, to
address this issue, we built in a shortcut that will store the map locally following
the first initialization of CARVE. Directions are included in Appendix K.

6.1.3 Problem No. 3: Picture Quality Is Granulated or Pixelated

If the picture becomes granulated or pixelated, this may be a sign of a graphics card
issue. Building complex VEs, especially those with a number of moving objects,
can slow down the system. One solution is to reduce the number of static and
dynamic objects in the VE. However, that may not always be possible. A second
solution is to use trigger points to create and delete NPC and path-following
vehicles at set points in time and space during the mission run (Appendixes E–H).
Finally, check the hardware—more specifically, the graphics card. Nvidia GeForce
graphics cards were found to be better suited to work with complex VEs within
RIVET than the Nvidia Quadro cards. In addition, it may be beneficial to have a
graphics card with a separate memory storage (e.g., Nvidia GeForce GTX 780).

Approved for public release; distribution is unlimited.

40

If this issue only occurs on the CARVE display, then it may be a packaging issue.
CARVE pulls the camera video from the BOLT machine by decompressing the
video stream and then enlarging it on the CARVE screen. This process of shrinking
and then enlarging the video stream can lead to pixelation. One possible solution is
to reduce the screen size on the BOLT machine by clicking on the Configuration
button prior to mounting the BOLT sensor (Fig. 29).

Fig. 29 Location to change the screen size

6.1.4 Problem No. 4: Camera Sensor Is Located in the Wrong Place

It is possible that the standard camera sensor location is not in ideally placed to
meet the needs of the experiment. For example, if the camera is placed too high or
too low, a Soldier avatar may appear to be taller or shorter than an average person
appears. Similarly, the height of the camera sensor on a vehicle may give the
perspective of driving on roof if placed too high, or display the animations of the
wheel wells if placed too low. In addition, the forward or rear placement of the
camera sensor can change the perspective of the experiment. For example, with a
Soldier avatar, it is possible to change the camera placement to be in front of the
Soldier, at eye level of the Soldier, or behind the Soldier.

Approved for public release; distribution is unlimited.

41

The solution for changing the placement of the camera is simple, but it requires an
understanding of the TorqueScript files. Every player vehicle has an associated
TorqueScript file (.cs) that can be located in the following directory:
C:\RIVET\sim.base\server. To edit the specific vehicle file (.cs), it will need to be
opened as a text file in Notepad, Notepad++, or Torsion.

The following are step-by-step directions on how to adapt the camera sensor
placement for the TAC-C.

1. Open the tacc_weapons.cs file (C:\RIVET\sim.base\server).

2. Scroll down or search (Ctrl+f) for //3rd person camera settings (around line
98).

3. To change the camera’s distance either forward or backward from the
middle of the vehicle, change the cameraMinDist number. The max
numbers are +8.0 and –8.0.

4. To change the vertical distance higher or lower, change the cameraOffset
with a positive or negative number (Fig. 30).

Note: Changing the location of the camera sensor in this file will change the placement of the camera sensor
for this vehicle when used in any mission in the future. Therefore, it may be beneficial to add a comment (green
text denoted with 2 forward slashed lines) marking changes made to the TorqueScript file.

Fig. 30 TorqueScript file in Torsion for adapting the camera sensor placement for the
TAC-C vehicle

6.1.5 Problem No. 5: Need to Customize Pre-loaded Animation
Sequences

The current version of RIVET is designed to initialize some set animation
sequences upon inclusion in a mission environment. For example, in the experiment
on target detection (Section 5.1.2), upon placing the M16 rifles within the VE, they
began to spin, as is common in game design. This animation sequence may or may
not be ideal for a specific experiment; however, this animation sequence has also
been programmed to be customizable. In other words, it is possible to stop the rifles
from spinning in circles. Although this specific example refers to rifles that spin,
other animation sequences might be customized in a similar manner. Some brief
directions to customize are as follows:

Approved for public release; distribution is unlimited.

42

1. In RIVET, press F11 to open the World Editor.

2. Press F4 (or use the Window menu) to open the World Editor Creator.
Select and add the M16 rifle from the menu on the right side of the screen.

3. To add the M16 rifle, select “shapes”, “weapons”, and “M16”. A spinning
rifle should be visible in the VE.

4. Click on the M16. Once it has a yellow box, then press F3 (or use the
Windows menu) to open the World Editor Inspector to customize the M16
rifle.

5. To stop the rifle from spinning, deselect the Rotate button and click apply
(Fig. 31).

6. The rifle will continue spinning. Go to File, click Save, and then logout of
RIVET completely. After logging back in to the Mission file, the rifle
should no longer be spinning.

7. Another way to ensure that it accepted the changes is by looking at the
TorqueScript file. To do this, open the Mission File (.mis) by going to the
directory C:\RIVET\sim.base\data\usermissions\ and select the correct
Mission file. At the bottom of the file, the new item should appear. In the
example shown in Fig. 32, the dataBlock is an M16 and the rotate is set to
“0” or false (marked with a red arrow).

Fig. 31 Example of adapting animations: spinning M16

Approved for public release; distribution is unlimited.

43

Fig. 32 Example code for customizing rotation animations on the M16 rifle

6.1.6 Problem No. 6: Removing Add-ons from Pre-loaded Graphics and
Animations

The current design of RIVET includes a number of accessible graphics and
animations. However, in their original state it may not be possible to directly
integrate those graphics into a new mission. For example, in the experimental
design using the TAC-C vehicle in place of a future self-driving vehicle for Soldier
transport in a noncombat environment (Section 5.3), even after relocating the
camera sensor, it was still possible to see the weapons systems. Since the design of
this vehicle was built in multiple pieces, it was possible to simply remove the
graphics (i.e., the weapons systems) while maintaining the functionality of a turret,
from which the camera can move through the BOLT interface. Some quick
instructions for removing the weapons systems graphics from the TAC-C vehicle
are as follows:

1. Open the directory: C:\RIVET\sim.base.data\vehicles\tacc_weapons.

2. Select the following 4 .dts media files: tu_machinegun_act;
tu_maingun_act; tu_rsta_act; and v_tac-c_weapons (Fig. 33).

3. Do not delete these files. Create a new folder in this directory called temp,
and place the files in this folder (Fig. 34) to allow the files to be returned to
the directory at a later time.

Approved for public release; distribution is unlimited.

44

Fig. 33 Directory location of files to remove weapons systems from the TAC-C

Fig. 34 Creation of a temporary folder

Approved for public release; distribution is unlimited.

45

6.2 Support and Documentation

6.2.1 RIVET Developer’s Guide

Perhaps one of the most useful and relevant sources to understanding the makeup
and architecture of RIVET is the RIVET Developer’s Guide (General Dynamics
Robotic Systems 2010). This document is included in the software and provides an
introduction to the TGE (Chapter 1), system requirements (Chapter 2), a high-level
overview of RIVET (Chapter 3), instructions for creating objects (Chapters 4–7),
instructions for world building and introduction to the editors (Chapter 8),
introduction to TorqueScript (Chapter 9), entity AI (Chapter 10), dataset creation
(Chapter 11), and HITL support (Chapter 12–13). However, this resource is a
proprietary document that may also be difficult to understand without additional
background in the TGE, game development, or computer programming.

6.2.2 GarageGames.com Online Forums and Documentation

Torque Developer Network (tdn.garagegames.com) is the official reference site for
coders, artists, or anyone working with Torque. This site requires a login and is
currently in its beta version. It has a number of tutorials and documentation for a
wide range of topics. Since all materials have been written collaboratively by
Torque developers, it can sometimes be difficult to understand by a novice Torque
user as it has varying levels of descriptions and explanations. Also, some of the
step-by-step directions reference editors that are not available in the RIVET v.1.0.
However, the documentation often provides examples of TorqueScript files that can
be leveraged to meet a user’s needs and is constantly updated with new information.
In addition, a number of resources are also freely available
(http://docs.garagegames.com/tge/official/).

6.2.3 The Game Programmer’s Guide to Torque

The Game Programmer’s Guide to Torque (Maurina 2006) is a GarageGames book
that provides a cogent, base-level introduction to Torque from start (opening the
TGE for the first time) to finish (putting it all together). The core substance of the
book focuses on the game elements including classes, objects, and even an
introductory glance into scripting and game interfaces. While this book provides a
number of step-by-step examples, the design and setup of RIVET extends beyond
the standard layout of the TGE. In addition, it may not go into the level of detail
needed for creating HRI missions but overall is a valuable resource.

Approved for public release; distribution is unlimited.

46

6.2.4 Scripting

While this report does not provide a lot of detail about TorqueScript, understanding
the “what” and the “how” can add customization capabilities to the VE. To begin,
TorqueScript is a programming language very similar to C++. Having an
introductory understanding of programming languages can help immensely,
especially when reading different resources. This report provides an overview of
some additional resources to scripting. A general introduction to TorqueScript can
be found by reviewing the GarageGames online documentation. This information
is available online at http://docs.garagegames.com/tgea/official/content
/documentation/Scripting%20Reference/Introduction/TorqueScript.html. For a
more in-depth review, the book Advanced 3D Game Programming All in One
(Finney 2005) comes with a CD and provides good explanations of datablocks,
vectors, and matrices, along with an entire chapter on TorqueScript. In addition, the
book 3D Game Programming All in One (Finney 2007) provides an introduction to
the entire process of creating a game within Torque, including building the models,
creating animations, server-client architectures, creation of GUIs, and even testing.

6.2.5 Animations

Chapter 7 of the RIVET Developers Guide (General Dynamics Robotic Systems
2010) provides the most in-depth instruction as to creating animated models. There
are multiple choices for modeling and rendering applications such as Blender,
Maya, and 3ds Max. The instructions in the Guide are based on 3ds Max by
Autodesk.

6.2.6 Other Torque Resources

Finally, other online resources may be helpful in providing guidance and instruction
while developing specific missions, including tutorials by Dr David J Sushil: A
Torque Game Engine Primer (2008), Simple AI in the Torque Game Engine (2008),
Creating Doors in Torque (2007), Animating Characters in Torque (2007), Sound
Effects in Torque (2007), and Controlling Events with Triggers in Torque (2007).
These resources, as well as a number of examples were written as instructional
guides for game development students. These step-by-step guides often provide
more detail than programming books or online forums. In addition, they are freely
downloadable .pdf files that can be found online at http://www.davidjsushil.com
/index.php?action=tutorials.

Approved for public release; distribution is unlimited.

47

7. Conclusions

Using a game engine (such as RIVET) to create a robotic platform application,
while including a separate interface for human interaction, provides a division
between the software applications. This separation allows software engineers to
make changes to the algorithms in perception, intelligence, and mobility while
leaving the HRI untouched. Therefore, development of each part may continue
while still allowing for testing at each step. The game engine allows for
reproducibility during testing to capture the user interactions with the robot. There
is no longer a need to wait for the final product to roll off the assembly line and into
the hands of Soldiers before conducting experimentation to explore human
interaction questions. Instead, integrating HRI experimentation early on can help
drive design choices during the stages of development.

Approved for public release; distribution is unlimited.

48

8. References

Basdogan C, De S, Kim J, Muniyandi M, Kim H, Srinivasan MA. Haptics in
minimally invasive surgical simulation and training. Computer Graphics and
Applications, IEEE. 2004;24(2):56–64.

Bethel CL, Salomon K, Murphy RR, Burke JL. Survey of psychophysiology
measurements applied to human-robot interaction. In: Robot and human
interactive communication, 2007. RO-MAN 2007. The 16th IEEE
International Symposium; 2007 Aug 26–29; Jeju, South Korea. New York
(NY): IEEE; c2007. p. 732–737. doi: 10.1109/ROMAN.2007.4415182.

Bicho E, Louro L, Erlhagen W. Integrating verbal and nonverbal communication
in a dynamic neural field architecture for human-robot interaction. Frontiers in
Neurorobotics. 2010;4(5). doi: 10.3389/fnbot.2010.00005.

Bodt BA, Childers MA, Hill SG, Camden RS, Gonzalez JP, Dean RM, Dodson
WF, Kreafle G, LaCaze A, Sapronov L. Unmanned ground vehicle two-level
planning technology assessment. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 2010. Report No.: ARL-TR-5331.

Boehm BW. A spiral model of software development and enhancement. Computer.
1988;21(5):61–72.

Cassenti DN, Kelley TD, Avery E, Yagoda RE. Location label speech options
improve robot operator performance. In: Proceedings of the Human
Factors and Ergonomics Society. Thousand Oaks (CA): SAGE Publications;
2011;55(1): 439–443. doi: 10.1177/1071181311551090.

Chen JYC, Barnes MJ. Human-agent teaming for multirobot control: a review of
human factors issues. IEEE Transactions on Human-Machine Systems.
2014;44(1):13–29. doi:10.1109/THMS.2013.2293535.

Chen JYC, Barnes MJ, Qu Z, Snyder MG. RoboLeader: an intelligent agent for
enhancing supervisory control of multiple robots. Aberdeen Proving Ground
(MD): Army Research Laboratory (US); 2010. Report No.: ARL-TR-5239.

Chen JYC, Terrence PI. Effects of imperfect automation and individual differences
on concurrent performance of military and robotics tasks in a simulated
multitasking environment. Ergonomics. 2009;52:907–920.

Dautenhahn K. Socially intelligent robots: dimensions of human–robot interaction.
Philosophical Transactions of the Royal Society B: Biological Sciences.
2007;362(1480):679–704.

Approved for public release; distribution is unlimited.

49

Davies B. A review of robotics in surgery. Proceedings of the Institution of
Mechanical Engineers, Part H: Journal of Engineering in Medicine.
2000;214:129–140. doi: 10.1243/0954411001535309.

Dean RMS, DiBerardino CA. Robotics Collaborative Technology Alliance: An
open architecture approach to integrated research. In: Suresh R, editor.
Proceedings of SPIE, Open Architecture/Open Business Model of Net-Centric
Systems and Defense Transformation; 2014; Baltimore (MD): International
Society for Optics and Photonomics.

Finney KC. Advanced 3D game programming all in one. Boston (MA): Thomson
Course Technology; 2005.

Finney KC. 3D game programming all in one. 2nd ed. Boston (MA): Thomson
Course Technology; 2007.

General Dynamics Robotic Systems. RIVET developer’s guide. (included in
software installer package in Docs folder). Westminster (MD): General
Dynamics Robotics Systems; 2010.

Gerkey BP, Vaughan RT, Howard A. The player/stage project: tools for multi-robot
and distributed sensor systems. In: Proceedings of the 11th International
Conference on Advanced Robotics. ICAR 2003; 2003 Jun 30–Jul 3; Coimbra,
Portugal. p. 317–323.

Gonzalez JP, Dodson W, Dean R, Kreafle G, Lacaze A, Sapronov L, Childers M.
Using RIVET for parametric analysis of robotic systems. Proceedings of the
2009 Ground Vehicle Systems Engineering and Technology Symposium;
2009 Aug 18–20; Troy, MI.

Goodrich MA, Schultz AC. Human-robot interaction: a survey. Foundations and
trends in human-computer interaction. 2007;1(3):203–275. doi:
10.1561/1100000005.

Groom V. What’s the best role for robot? Cybernetic models of existing and
proposed human-robot interaction structures. In: Filipe J, Andrade-Cetto J,
Ferrier J, editors. Proceedings of the Fifth International Conference on
Informatics in Control, Automation, and Robotics; ICINCO-RA 2008; 2008
May 11–15; Funchal, Madeira, Portugal. Funchal (Portugal): INSTICC Press;
c2008. p. 323–328.

Her MG, Hsu KS. Design and analysis of haptic direct drive robot for virtual reality.
Journal of Information and Optimization Sciences. 2001;22(3):441–461.

Approved for public release; distribution is unlimited.

50

Hughes S, Lewis M. Robotic camera control for remote exploration. In:
Proceedings of ACM CHI 2004 Conference on Human Factors in Computing
Systems; 2004 Apr 24–29; Vienna, Austria. New York (NY): ACM; c2004. p.
511–517.

Kunkler K. The role of medical simulation: an overview. The International Journal
of Medical Robotics and Computer Assisted Surgery. 2006;2:203–210. doi:
10.1002/rcs.101.

Lee JD, See KA. Trust in automation: designing for appropriate reliance. Human
Factors: the Journal of the Human Factors and Ergonomics Society.
2004;46(1):50–80. doi:10.1518/hfes.46.1.50_30392.

Lewis M, Wang J, Hughes S. USARSim: simulation for the study of human-robot
interaction. Journal of Cognitive Engineering and Decision Making.
2007;1(1):98–120.

Loper ML. The modeling and simulation life cycle process. In: Loper M, editor.
Modeling and simulation in systems engineering life cycle: core concepts and
accompanying lectures. London (England): Springer-Verlag; 2015. p. 17–27.

Marshall P. Army tests driverless vehicles in ‘living lab’. Vienna (VA): GCN
Technology, Tools and Tactics for Public Sector IT. 2014 Jul 16 [accessed
2014 Sep 8]. http://gcn.com/articles/2014/07/16/aribo-armytardec.aspx.

Maurina EF III. The game programmer’s guide to torque: under the hood of the
Torque game engine. Wellesley (MA): GarageGames, Inc; 2006.

Michel O. Webots: symbiosis between virtual and real mobile robots. In: Virtual
Worlds. Berlin Heidelberg (Germany): Springer-Verlag; 1998 Jan; p. 254–
263.

Murphy RR, Schreckenghost D. Survey of metrics for human-robot interaction. In:
Proceedings of the 8th ACM/IEEE Human-Robot Interaction Conference; HRI
2013; 2013 Mar 3–6; Tokyo, Japan; Piscataway (NJ): IEEE; c2013. p. 197–
198.

Nielsen C, Ricks B, Goodrich M, Bruemmer D, Few D, Walton M. Snapshots for
semantic maps. In: Proceedings of the 2004 IEEE International Conference on
Systems, Man, and Cybernetics; 2004 Oct 10–13; The Hague, Netherlands.
Piscataway (NJ): IEEE; c2004. p. 2853–2858.

Approved for public release; distribution is unlimited.

51

Nourbakhsh I, Sycara K, Koes M, Yong M, Lewis M, Burion S. Human-robot
teaming for search and rescue. Pervasive Computing, IEEE. 2005;4(1):72–79.

Olsen D Jr, Wood S. Fan-out: measuring human control of multiple robots. In
Proceedings of ACM CHI 2004 Conference on Human Factors in Computing
Systems; 2004 Apr 24–29; Vienna, Austria. New York (NY): ACM; c2004.
p. 231–238.

Parasuraman R, Galster S, Miller C. Human control of multiple robots in the
RoboFlag simulation environment. In: IEEE International Conference on
Systems, Man and Cybernetics, 2003.; 2003 Oct 5–8; Washington, DC.
Piscataway (NJ): IEEE; c2003. Vol. 4, p. 3232–3237.

Parasuraman R, Riley V. Humans and automation: use, misuse, disuse, abuse.
Human Factors: the Journal of the Human Factors and Ergonomics Society.
1997;39(2):230–253. doi: 10.1518/00187209777854886.

Phillips E, Ososky S, Grove J, Jentsch F. From tools to teammates toward the
development of appropriate mental models for intelligent robots. In:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting;
2011 Sep 19–23; Las Vegas, NV. Thousand Oaks (CA): SAGE Publications;
2011:55(1):1491–1495.

Preece J, Sharp H, Rogers Y. Interaction design: beyond human-computer
interaction. West Sussex (UK): John Wiley & Sons Ltd; 2007.

Rickheit G, Wachsmuth I. Alignment in communication. Künstliche Intelligenz.
2008;22(2):62–65.

Sanders TL, Llorens N, Billings DR, Schaefer KE, Hancock PA, Driskell L,
Long T. Physiological and behavioral cues: identifying their potential value in
measuring human-robot trust. Poster presented at: Division 21, American
Psychological Association; 2012 Aug; Orlando, FL.

Sanders TL, Wixon T, Schafer KE, Chen JY, Hancock PA. The influence of
modality and transparency on trust in human-robot interaction. In: Proceedings
of the 4th Annual International Inter-Disciplinary Conference on Cognitive
Methods in Situation Awareness and Decision Support (CogSIMA); 2014 Mar
3–6; San Antonio, TX. Piscataway (NJ): IEEE; c2014. p. 156–159.

Schaefer KE. Measuring trust in human robot interactions: development of the trust
perception scale – HRI. In: Lawless W, Mittu R, Wagner A, Sofge D, editors.
The intersection of robust intelligence (RI) and trust in autonomous systems;
New York (NY): Springer; 2016. p. 191–219.

Approved for public release; distribution is unlimited.

52

Schaefer KE. The perception and measurement of human-robot trust [doctoral
dissertation]. [Orlando (FL)]: University of Central Florida; 2013.

Schaefer KE, Scribner DN. Individual differences, trust, and vehicle autonomy: a
pilot study. In: Proceedings of the Human Factors and Ergonomics Society;
2015 Oct 26–30; Los Angeles, CA. Thousand Oaks (CA): SAGE Publications;
c2015.

Schafer KE, Sanders T, Kessler TA, Dunfee M, Wild T, Hancock PA. Fidelity &
validity in robotic simulation. In: Proceedings of the 5th Annual International
Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness
and Decision Support (CogSIMA); 2015 Mar 9–12; Orlando, FL. Piscataway
(NJ): IEEE; c2015. p. 113–117. doi: 10.1109/COGSIMA.2015.7108184.

Sheridan TB. Human supervisory control of robot systems. Robotics and
Automation. 1986;3:808–812. doi: 10.1109/ROBOT.1986.1087506.

Steinfeld A, Fong T, Kaber D, Lewis M, Scholtz J, Schultz A, Goodrich M.
Common metrics for human-robot interaction. In: Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-Robot Interaction; 2006 Mar 2–3;
Salt Lake City, UT. New York (NY): ACM; p. 33–40.

Sushil DJ. A Torque Game engine primer. Orlando (FL): Sushil DJ; 2008 Apr 14
[accessed 2015 Nov 25]. Notes (http://www.davidjsushil.com/primer.pdf).

Sushil DJ. Simple AI in the Torque Game engine. Orlando (FL): Sushil DJ; 2008
Apr 14 [accessed 2015 Nov 25].

 Notes (http://www.davidjsushil.com/tutorials/simpleai.pdf).
Sushil DJ. Creating doors in Torque. Orlando (FL): Sushil DJ; 2007 Jun 26

[accessed 2015 Nov 25].
Notes (http://www.davidjsushil.com/tutorials/doors.pdf).

Sushil DJ. Animating characters in Torque. Orlando (FL): Sushil DJ; 2007 Jun 16
[accessed 2015 Nov 25].
Notes (http://www.davidjsushil.com/tutorials/doors.pdf).

Sushil DJ. Sound effects in Torque. Orlando (FL): Sushil DJ; 2007 Jun 9 [accessed
2015 Nov 25].

 Notes (http://www.davidjsushil.com/tutorials/playingsounds.pdf).

Sushil DJ. Controlling events with triggers in Torque. Orlando (FL): Sushil DJ;
2007 Apr 23 [accessed 2015 Nov 25].

 Notes (http://www.davidjsushil.com/tutorials/playingsounds.pdf).

Approved for public release; distribution is unlimited.

53

Sycara K, Lewis M. Experiments in implicit control. In: Notes of the IJCAI 2003
Workshop on Mixed-Initiative Intelligent Systems; 2003 Aug 9; Acapulco,
Mexico [accessed 2015 Nov 4] http://www.researchgate.net/profile
/Katia_Sycara2/publication/246140754_Experiments
_in_Implicit_Control/links/53d7c9740cf2631430bfc378.pdf.

US Army Research Laboratory Robotics Collaborative Technology Alliance
(RCTA): FY 2012 annual program plan. Aberdeen Proving Ground (MD):
Army Research Laboratory (US); 2012 Mar. [accessed 2015 Nov 3]
http://www.arl.army.mil/www/pages/392/RCTA_FY12_APP.pdf.

Weiss A, Bernhaupt R, Lankes M, Tscheligi M. The USUS evaluation framework
for human-robot interaction. In: Proceedings of the AISB Symposium on New
Frontiers in Human-Robot Interaction; 2009 Apr 6–9; Edinburgh, Scotland.
Hove (UK): AISB; c2009. Vol. 4, p. 11–26.

Approved for public release; distribution is unlimited.

54

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

55

Appendix A. RIVET Menus

Approved for public release; distribution is unlimited.

56

Server Computer: Main User. The first button on the main menu is Load Mission
(Fig. A-1).

Fig. A-1 RIVET main menu GUI for main user

It leads the user to the next GUI where the user can choose the mission, vehicle,
and whether it is friendly or enemy (Fig. A-2). The image on the right is the
overhead map of the mission area.

Fig. A-2 RIVET load menu GUI for main user

Approved for public release; distribution is unlimited.

57

Client Computer: Add Additional Players. Up to 64 players can join a mission
(Fig. A-3). A player can be a person (e.g., Soldier), vehicle (e.g., Humvee), robot
(e.g., Talon), or a sensor attached to the main character (from the Server computer).

Fig. A-3 RIVET main menu GUI for client computer

After selecting Join Mission, a new window (Fig. A-4) will open that will allow
selection of a player character or vehicle [1] and side (i.e., red, blue, neutral) [2].
To connect to the correct Mission, click Find Servers [3] and select the Server
Name. To join the mission, select Join Mission [4].

Fig. A-4 RIVET join mission GUI for client computer

Approved for public release; distribution is unlimited.

58

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

59

Appendix B. CARVE Menus

Approved for public release; distribution is unlimited.

60

CARVE Main Menu. The Control of Autonomous Robotic Vehicle Experiments
(CARVE) Main Menu (Fig. B-1) leads the user to a series of submenus located in
the lower-right-hand corner of the screen. These include the Connection button
(bottom right), settings submenu (bottom left), user interfaces (top left), and vehicle
operations submenu (top right). These 4 icons are always available to the user and
are accessed by a mouse interface.

Fig. B-1 CARVE Main Menu GUI

Approved for public release; distribution is unlimited.

61

Settings submenu. The settings submenu has a few options for customization of
the connectivity, video, networking, controller choice, and exiting the simulation
(Fig. B-2).

Fig. B-2 Settings submenu

This submenu allows the experimenter to check the setup of the experimental space.
This includes being able to set up the connectivity of the sensor and vehicle by
entering internet protocol (IP) addresses and ports. Connectivity is needed to
connect CARVE to RIVET. The video and networking buttons were designed for
later versions of CARVE so that the video and bandwidth can be degraded to
represent poor communication situations. The controller button allows the
experimenter to set the device that will be used in the mission (e.g., joystick,
steering wheel). Finally, to exit the program is self-explanatory.

Approved for public release; distribution is unlimited.

62

User Interfaces submenu. The User Interfaces submenu (Fig. B-3) provides the
experimenter the capability to set up a number of additional functionalities for the
participant.

Fig. B-3 User interfaces submenu

The Video button allows the experimenter to set the main screen to show the video
stream. The Map button sets the main screen to show the overhead map of the area.
The picture-in-picture (PIP) option displays either the map or video opposite to
what is displayed on the main screen in a smaller screen in the upper-right-hand
corner of the video feed. This gives the user additional situation awareness during
experiments. The Controls button provides an on-screen option for controlling the
robot or vehicle. While the Gesture and Speech buttons are used to integrate an
Xbox Kinect sensor into an experiment if naturalistic communication is required.

Approved for public release; distribution is unlimited.

63

Vehicle Operations submenu. The Vehicle Operations submenu (Fig. B-4) allows
the user to change the posture in which the vehicle is used.

Fig. B-4 Vehicle Operations submenu

Tele-op (which stands for teleoperation) allows the user to drive the vehicle with
the chosen controller. These include the game pad, joystick, or racing wheel, to
name a few. If the vehicle is set up with a weapon system, the Main Gun or Machine
Gun settings allow the movement of the turret with the same controller. The
Waypoint Follow button has a submenu that gives the user the control to initiate
waypoint following. The navigation is set using the map screen to create a waypoint
path for the vehicle to follow.

Approved for public release; distribution is unlimited.

64

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

65

Appendix C. Creating a New Mission: Load RIVET

Approved for public release; distribution is unlimited.

66

1. Open RIVET. The Load Mission button leads the user to the next graphical
user interface (GUI) shown in Fig. C-1 (see also the RIVET Developer’s Guide,1
p. 41–43). It allows the user to choose the mission, the player character
(vehicle/Soldier), and whether it is friendly or enemy.

Fig. C-1 RIVET load mission menu

1 General Dynamics Robotic Systems. RIVET developer’s guide (included in software installer package

in Docs folder). Westminster (MD): General Dynamics Robotics Systems; 2010. p. 41–43.

Approved for public release; distribution is unlimited.

67

2. Pick a player character. When first building a new virtual environment (VE)
for HRI research, it is recommended to select either a Soldier or Humvee (Fig.
C-2). These two player characters are designed to function well with the
keyboard and mouse user interface. However, when using RIVET with the
BOLT sensor and CARVE application, choose only a vehicle with BOLT listed
in the title. BOLT deactivates the keyboard and mouse associated with the
Server computer.

Fig. C-2 Selecting a player character: Humvee

Approved for public release; distribution is unlimited.

68

3. Choose your mission. When creating a new VE, it may be beneficial to begin
by opening a Mission file that has already been created, as shown in Fig. C-3
(e.g., ARL Test World). The associated TorqueScript mission file (ARL Test
World.mis) is located in the following directory: C:\RIVET\sim.base
\data\missions.

Fig. C-3 Selecting a mission

To successfully open and run a mission, this directory
(C:\RIVET\sim.base\data\missions) should have the following files: Mission
file (.mis) and Terrain file (.ter). To run BOLT and CARVE, the directory
should also contain a Map (.png) and a location file (.cs).

Approved for public release; distribution is unlimited.

69

4. Launch Mission. Commands for controlling the player character and switching
camera views (first person, third person, or birds-eye view [Fig. C-4]) are
available in the RIVET Developer’s Guide1 (p. 48–49).

Fig. C-4 Changing camera views: example of a birds-eye view

5. Save As a new Mission File. Press F11 on the keyboard; click on File, and
select Save Mission As (Fig. C-5).

Fig. C-5 How to save a new mission file

Approved for public release; distribution is unlimited.

70

6. Rename File. This will save the mission in a new directory
[C:\RIVET\sim.base\data\user_missions]. Make sure to rename the file (e.g.,
HRI Experiment 1.mis); otherwise it will overwrite a previous file (Fig. C-6).

Fig. C-6 Rename file

This process will create the Mission file (.mis) and a Terrain file (.ter). To check
that the files were created, open the directory (C:\RIVET\sim.base
\data\usermissions) as shown in (Fig. C-7).

Fig. C-7 Save mission as new file name

7. Save Mission. Once you have created a new Mission file with a new name, it
is important to save often. The mission can be saved by selecting file menu
option (Press F11, select File, and select Save Mission). It is also possible to
save the mission by using the keyboard command [Ctrl+s].

Approved for public release; distribution is unlimited.

71

8. Delete Current Objects (e.g., building and path). To delete an object use the
mouse, hold left mouse button down and drag the mouse to select the area
desired. A yellow box will appear around the objects selected. To mark that the
object has been selected, it will be outlined in red (Fig. C-8). To delete these
objects, press the Delete key on the keyboard. Note there are no “undo” options.

Fig. C-8 Selecting objects in the VE

9. Closing RIVET. There are different ways to close RIVET. The first is through
the File menu (F11, File, Quit). The second is by using the keyboard command,
Alt+F4. Remember to save before closing RIVET.

Approved for public release; distribution is unlimited.

72

10. Open Saved Mission. To open the newly created User Mission file, open
RIVET and click on Launch Mission (see step 1). Click on the User Mission
tab and select the mission. As shown in Fig. C-9, the mission name will be the
original file name (e.g., ARL Test World) even though the file was saved with
a new name [HRI Experiment 1.mis]. This is still the newly created mission;
however, there is an additional step to change the name of the file in the Main
Menu GUI.

Fig. C-9 Open saved user mission

Approved for public release; distribution is unlimited.

73

11. Change User Mission File Name. To update the file name in Main Menu GUI,
close the RIVET Main Menu (press Cancel and Exit to close RIVET. The next
step involves editing the TorqueScript. Open the Mission file (.mis) from the
directory. Directions to access the .mis file in the Data Directory can be found
in step 6. . Open the mission file by using Notepad, Notepad++, or Torsion. At
the top of the .mis file is the TorqueScript for the “name” and “desc0” (see Fig.
C-10 – Original Script). Both should be updated so that name matches the new
User Mission name and desc0 marks the person(s) responsible for creating the
new VE. These are marked in red text (see Fig. C-10 – Revised Script).

Original script Revised script

new ScriptObject(MissionInfo) { new ScriptObject(MissionInfo) {
 name = “ARL Test World”; name = “RIVET TR Example: HRI Experiment 1”;
 desc0 = “General Dynamics Robotic Systems”; desc0 = “Designed by Dr. K.E. Schaefer, ARL”;
 aiPlayerFile = “testAIplayer.cs”; aiPlayerFile = “testAIplayer.cs”;
 descLines = “1”; descLines = “1”;
 map = “ARL_world”; map = “ARL_world”;

}; };

Fig. C-10 Example TorqueScript to update the user mission name for the main menu GUI

12. Now when RIVET is opened and Launch Mission selected, the User Missions
tab will list the updated name of the correct user mission (Fig. C-11). While this
will not inhibit use of the system, updating the User Mission file name in the
Main Menu GUI is encouraged, as it helps to accurately and effectively
differentiate between multiple User Mission files.

Fig. C-11 Main menu GUI: updated user mission file name

Approved for public release; distribution is unlimited.

74

13. Map. Another way to help differentiate between the user missions is by adding
a map to the User Mission login screen. Map creation is also essential when
using the CARVE application. To create a Map, first load RIVET and launch
the User Mission. Next, press Alt+c on the keyboard to switch camera view.
Use W, A, S, D keyboard commands at the same time as moving the mouse to
move upward into the air.

14. Creating the Map. To initiate the process for creating a map, first follow the
steps to name the map the same name as the User Mission. Press the tilde (~)
key on the keyboard to open the Console and type $userPref::MissionMaps =
“HRI Experiment 1, 4, 4, 0.4”; as shown in Fig. C-12. Next, press Enter on the
keyboard and ~ to close the Console. To create the Map, press Alt+m on the
keyboard. The Map (.png) and associated location file (.cs) are automatically
place into the RIVET directory C:\RIVET (Fig. C-13).

Fig. C-12 Create map screen

Fig. C-13 RIVET directory location for map (.png) and location (.cs) files

Approved for public release; distribution is unlimited.

75

15. Setting up a Map in RIVET. For RIVET to be able to successfully read the
Map, first, move the map and location files (.png and .cs) to the User Mission
directory as shown in Fig. C-14 (C:\RIVET\sim.base\data\usermissions).

Fig. C-14 User mission directory

Next, open up the Mission file (C:\RIVET\sim.base\data\usermissions\HRI
Experiment 1.mis) and add or revise the TorqueScript (see Fig. C-15, line 6).
This will now call the Map. When RIVET is opened, select the User Mission,
and a Map will now be present (Fig. C-16).

Fig. C-15 TorqueScript: adding the map

Fig. C-16 Main Menu GUI: user mission file with map

Approved for public release; distribution is unlimited.

76

16. Map Size. To check the map size, right click on the map to look at the properties
of the file. Ideally, the map should be 1600 × 1600 pixels and under 2 MB in
size. If this is not the case, use an outside program (e.g., Adobe Fireworks) to
reduce the size of the map (.png). If this step is missed, RIVET will provide an
error message as shown in Fig. C-17.

Fig. C-17 Error message

Approved for public release; distribution is unlimited.

77

Appendix D. Creating a New Mission: Editing the Terrain

Approved for public release; distribution is unlimited.

78

1. Terrain Editor Tool. Use the Terrain Editor tool to adapt the height and shape
of the terrain (Fig. D-1). It can be accessed by pressing F11 on the keyboard
and selecting Window and Terrain Editor from the drop-down menu.

Fig. D-1 Terrain Editor tool

2. Action Menu. Select the action (e.g., add dirt, adjust height) to be revised (Fig.
D-2).

Fig. D-2 Terrain Editor: Action submenu

Approved for public release; distribution is unlimited.

79

3. Brush size. Choose the size of the brush (Fig. D-3).

Fig. D-3 Terrain Editor: Brush submenu

4. To edit the shape of the terrain, use the mouse. Click and hold the left mouse
button while dragging left, right, up, or down (Fig. D-4). This will raise or lower
the ground terrain.

Fig. D-4 Edit the shape of the terrain

Approved for public release; distribution is unlimited.

80

5. Terrain Painter tool. This tool bar is used to change the underlying texture of
the terrain. Click on one of the terrains and then paint the environment (Fig. D-5).

Fig. D-5 Terrain Painter tool

It is possible to add additional textures by clicking on Add (Fig. D-6, right side
menu) and searching through the menu options for different image files (.jpg)
(Fig. D-7). These image files can also be found in the terrains directory,
C:\RIVET\sim.base\data\terrains\terrains\snow2.jpg. This allows for greater
flexibility in the design of the terrain that can be updated at any time during
creation of the virtual environment.

Fig. D-6 Texture submenu

Approved for public release; distribution is unlimited.

81

Fig. D-7 Available terrain textures

6. Save often!

Approved for public release; distribution is unlimited.

82

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

83

Appendix E. Add Static Objects

Approved for public release; distribution is unlimited.

84

1. Change Camera View. Currently, the virtual environment is very empty (Fig.
E-1). Before adding objects, it is important to change the camera’s viewing
angle.

Fig. E-1 Original view

To toggle your camera to Fly mode (also known as birds-eye mode), press Alt+c
on the keyboard. This same action can also be achieved through the menu
options (F11) by selecting the Camera menu and the Toggle Camera option.
After the camera is placed in Fly mode, pull the mouse toward you and hold
down the “s” key. It will appear that you are “flying” higher into the air while
looking down at the ground. It should be possible to see the Humvee on the
ground below (Fig. E-2). This is the best view to have when adding static
objects; otherwise, they could end up being placed underground.

Fig. E-2 Fly mode

Approved for public release; distribution is unlimited.

85

2. Add objects. Use the World Editor Creator to add objects to the VE (Fig. E-3).
To open the World Editor Creator, press F11, select Window and World Editor
Creator. It may also be possible to open this menu by pressing F4 on the
keyboard.

Fig. E-3 World Editor Creator tool to add objects

3. Static Objects. RIVET already has a number of static objects available for use.
Most of these are available under the Interiors or Static Shapes directory
(Fig. E-4).

Fig. E-4 RIVET static object directory

Approved for public release; distribution is unlimited.

86

4. Finding Static Objects. It may be difficult to know what static objects are
currently available. RIVET has a Mission File [3D Object Catalog - DO NOT
MODIFY!!!] that provides a single location that includes a number of (but not
all) of the static objects available (e.g., buildings, roadways, warehouse objects,
and street signs). Fig. E-5 depicts the Main Menu GUI options for opening the
3D Object Catalog file. Figures E-6 through E-8 provide examples of some the
static objects available.

Fig. E-5 3D Object Catalog VE located in the Main Menu GUI

Fig. E-6 Options for static buildings

Approved for public release; distribution is unlimited.

87

Fig. E-7 Options for static warehouses

Fig. E-8 Options for static signs and other obstacles

Approved for public release; distribution is unlimited.

88

5. Locating an object’s file location. To find the location of an object in the tree
structure for later use in the VE, press F11, click on desired object, and open
the World Editor Inspector (Fig. E-9). The World Editor Inspector can be
opened by either pressing the F3 key on the keyboard, or pressing F11, selecting
Windows and World Editor Inspector from the drop-down menu.

Fig. E-9 World Editor Inspector menu

Approved for public release; distribution is unlimited.

89

6. World Editor Inspector. Click on open file dialog box (mouse cursor, outlined
with a red box) and then search for the name of the object (e.g.,
redBrick40sGarage) in the list (Fig. E-10). Make a note that this building is
located in the Interiors\DowntownDistrict directory.

Fig. E-10 Locating an object file in the World Editor Inspector

7. Open the selected mission [RIVET TR Example: HRI Experiment 1], and
repeat step 1 for adding static objects. The screen should appear as shown in
Fig. E-11.

Fig. E-11 User VE from fly mode

Approved for public release; distribution is unlimited.

90

Add a Static Object. Open the World Editor (F11) and then open the World
Editor Creator (see steps 2 and 3). Open the Interiors menu (Fig. E-12).

Fig. E-12 Adding a static object through the Interiors menu

8. Finding the Garage. Scroll down to find DowntownDistrict and click on
redBrick40sGarage. Once the garage is selected, it will appear in the VE.
However, as shown in Fig. E-13, the building is located on top of the Humvee
and partially underground.

Fig. E-13 Initial building placement

Approved for public release; distribution is unlimited.

91

9. Moving an object. To move an object, click (on the X, Y, or Z-axis) and drag
the building to a desired location (Fig. E-14).

Fig. E-14 Moving an object within the VE

10. Rotating an object. To rotate an object, press Alt on the keyboard and select
the Z-axis with the mouse (left mouse button). While holding both buttons,
move the mouse. The object will rotate. The position, rotation, and size of the
object can also be changed using the World Editor Inspector (F3) menu
(Fig. E-15).

Fig. E-15 Rotating an object

Approved for public release; distribution is unlimited.

92

11. Keep adding objects to the VE until it resembles the experimental environment.
These objects are automatically added to the Mission file (.mis). An example of
the TorqueScript that is added into the .mis file for a static object
(redBrick40sGarage.dif) is provided below.

12. Save often!

new InteriorInstance() {

position = "-58.2412 -9.79301 -1.4";
rotation = "0 0 1 231.085";
scale = "1 1 1";
interiorFile = "~/data/interiors/DowntownDistrict/redBrick40sGarage.dif";
useGLLighting = "0";
showTerrainInside = "0";

};

Approved for public release; distribution is unlimited.

93

Appendix F. Creating a Path

Approved for public release; distribution is unlimited.

94

1. Adding a path. To add a path that another vehicle or person may follow, open
the World Editor Creator (F4). Click on Path to name the path. Assign a unique
name to help differentiate between the paths. In Fig. F-1, the path name is
ExamplePath.

Fig. F-1 Naming a new path

Approved for public release; distribution is unlimited.

95

2. Adding a PathMarker. A PathMarker is used to label the points on the path
(Fig. F-2). This is the process to add all the path markers needed to complete
the desired path. Make sure every PathMarker has a unique name. Label names
should not have any spaces (use underscore if needed). Each PathMarker can
be moved in the VE in the same way static objects were moved. The Y-axis
should face the direction in which the vehicle is to move for each PathMarker.

Fig. F-2 Adding a PathMarker to the new path

Approved for public release; distribution is unlimited.

96

3. Linking the PathMarkers. Now that all the PathMarkers are placed and
rotated, select all the PathMarkers from the tree in the upper-right corner
(Folder name +MissionGroup – SimGroup) (Fig. F-3). They should be located
at the bottom of the tree structure since they were the most recent thing added
to the VE. To select multiple PathMarkers at the same time, hold down the Ctrl
key on the keyboard and click on each marker individually.

Fig. F-3 Selecting all PathMarkers on a path

Approved for public release; distribution is unlimited.

97

4. Move the PathMarkers under the path name (next to the infinity sign, see
Fig. F-4). In the VE, all markers will be connected by a dotted green line.

Fig. F-4 Linking the path

Approved for public release; distribution is unlimited.

98

5. To ensure the vehicle will be traveling in the correct direction, check and fix
the sequence order (seqNum) for each of the markers (Fig. F-5, red box). Click
on the sequence number in the Window Editor Inspector (F3) menu, type in the
correct number, and click Apply (e.g., the marker named ExamplePath1 should
have a Sequence number of 1). During this process, it is normal for the green
dotted line to look askew (Fig. F-5). It will become smooth again when all of
the PathMarkers are set to the appropriate sequence and all of the Y-axes are
facing the correct direction.

Fig. F-5 Setting the path sequence order (seqNum)

Approved for public release; distribution is unlimited.

99

Appendix G. Add a Path-Following Vehicle

Approved for public release; distribution is unlimited.

100

1. Adding a path-following vehicle: Open the World Editor Creator menu. Select
Shapes, select Vehicles, and then choose one of the path-following vehicles
(e.g., PathFollowingPickup1) (Fig. G-1). Highlight the vehicle and open the
World Editor Inspector to set the criteria for the vehicle.

Fig. G-1 Path-following vehicle: setting vehicle criteria

2. Adapting the criteria. In the World Editor Inspector (F3), give the truck a
name, enter the PathName, and disableMove (Fig. G-2).

Fig. G-2 Path-following vehicle: adapting criteria

Approved for public release; distribution is unlimited.

101

3. Adjust the vehicle’s speed. Right now the truck bounces from marker to
marker. This is happening because the truck’s velocity is currently set to zero.
To adjust the velocity (Fig. G-3), click on each marker and set a new speed
(meters per second). Adjusting the speed of the vehicle at each marker allows
for greater flexibility and control within the experiments.

Fig. G-3 Path-following vehicle: adjusting the vehicle speed

Approved for public release; distribution is unlimited.

102

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

103

Appendix H. Trigger a Non-player Character

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.

104

It is possible to add a non-player character (NPC) to this Path starting at
PathMarker1 at a specific time. To accomplish this task requires some
programming and creation of three new TorqueScript files, which we named
HRIexperimentAIplayer.cs, spawnNPC.cs, and triggerNPC.cs. The code samples
included below can be placed directly into your copy of RIVET. Here, we provide
the TorqueScript to include SoldierPlayer1 (the animations for this NPC have
already been included in a previous version of RIVET and can be located in
sim.base/data/shapes/soldier2 for the Soldiers, sim.base/data/shapes/terrorists for
insurgents, and sim.base/data/shapes/player for the civilians).

1. Initialize the NPCs (Soldier Player 1): Create a new TorqueScript file. Open

a text file and add the following code block. This file will link to the people
animations already available in RIVET. Save as a unique file name (e.g.,
HRIexperimentAIplayer.cs) in the following directory
C:\RIVET\sim.base\server. This file initializes the NPC and allows them to be
spawned on a path and to move on a path. For a reference point also look at a
previously created Player file (simbase/server/aiPlayer.cs). Green text
represents comments in the TorqueScript code. All comments are also
delineated with two forward slash lines at the beginning of the line.

//---
// Initializing NPCs
//---
//---
// AIPlayer callbacks
// The AIPlayer class implements the following callbacks:
//
// PlayerData::onStuck(%this,%obj)
// PlayerData::onUnStuck(%this,%obj)
// PlayerData::onStop(%this,%obj)
// PlayerData::onMove(%this,%obj)
// PlayerData::onReachDestination(%this,%obj)
// PlayerData::onTargetEnterLOS(%this,%obj)
// PlayerData::onTargetExitLOS(%this,%obj)
// PlayerData::onAdd(%this,%obj)
//
// Since the AIPlayer doesn't implement its own datablock, these callbacks
// all take place in the PlayerData namespace.
//---
function BasePlayer::onReachDestination(%this,%obj){
 if (%obj.crowd !$= "") {
 %endPath = %obj.crowd.isEndOfPath(%obj.index);
 if(%endPath) {
 AIPlayer::decideAction(%obj);
 }
 else {
 AIPlayer::nextPathDestination(%obj);
 }
 }
 else {
 //echo("AIPlayer::onReachDestination warning - Crowd is blank!");
 }
 if (%obj.path !$= "") {
 if (%obj.currentNode == %obj.targetNode)
 %this.onEndOfPath(%obj,%obj.path);

Approved for public release; distribution is unlimited.

105

 else
 %obj.moveToNextNode();
 }
 else {
 //echo("AIPlayer::onReachDestination warning - Path is blank!");
 }
}

function BasePlayer::onIdleOver(%this,%obj) {
 if (%obj.crowd !$= "") {
 AIPlayer::decideAction(%obj);
 }
 else {
 //echo("AIPlayer::onIdleOver warning - Crowd is blank!");
 }
}

function BasePlayer::onMoveStuck(%this,%obj){
 if (%obj.crowd !$= "") {
 AIPlayer::stuck(%obj);
 }
 else {
 //echo("AIPlayer::onMoveStuck warning - Crowd is blank!");
 }
}

function BasePlayer::onEndOfPath(%this,%obj,%path) {
 %obj.nextTask();
 // %obj.moveToNode(0);
}

function BasePlayer::onEndSequence(%this,%obj,%slot) {
 echo("Sequence Done!");
 %obj.stopThread(%slot);
 %obj.nextTask();
}

//---
// SoldierPlayer1
// Add this section for all NPCs that you have animations available
//---

datablock PlayerData(SoldierPlayer1 : SoldierBodyType1) {
 shootingDelay = 2000;
};

function SoldierPlayer1::onReachDestination(%this,%obj) {
 BasePlayer::onReachDestination(%this,%obj);
}

function SoldierPlayer1::onIdleOver(%this,%obj) {
 BasePlayer::onIdleOver(%this,%obj);
}

function SoldierPlayer1::onMoveStuck(%this,%obj) {
 BasePlayer::onMoveStuck(%this,%obj);
}

function SoldierPlayer1::onEndOfPath(%this,%obj,%path) {
 BasePlayer::onEndOfPath(%this,%obj,%path);
}

function SoldierPlayer1::onEndSequence(%this,%obj,%slot) {
 BasePlayer::onEndSequence(%this,%obj,%slot);
}

Approved for public release; distribution is unlimited.

106

//---
// AIPlayer static functions
//---

function AIPlayer::spawn(%datablock, %name, %spawnPoint)
{
 %player = new AIPlayer(){
 dataBlock = %datablock;
 path = "";
 };
 echo("AIPlayer::spawn - Player:",%player);
 MissionCleanup.add(%player);
 %player.setShapeName(%name);
 %player.setName(%name);
 %player.setTransform(%spawnPoint);
 echo("AIPlayer::spawn - spawnPoint:",%spawnPoint);

 return %player;
}

function AIPlayer::spawnOnPath(%datablock, %name, %path) {

 // Spawn a player and place him on the first node of the path
 echo("AIPlayer::spawnOnPath - Path:",%path);
 if (!isObject(%path)) {
 echo("AIPlayer::spawnOnPath - Cannot Find Path!");
 return;
}
%node = %path.getObject(0);
echo("AIPlayer::spawnOnPath - Node:",%node);
echo("AIPlayer::spawnOnPath - Node Transform:",%node.getTransform());
 %player = AIPlayer::spawn(%datablock, %name,%node.getTransform());
 echo("AIPlayer::spawnOnPath - Player:",%player);

 return %player;

}

//---
// AIPlayer methods
//---

function AIPlayer::followPath(%this,%path,%node) {
 // Start the player following a path
 echo("AIPlayer::followPath - Entered method.\n");

 %this.stopThread(0);

 if (!isObject(%path)) {
 %this.path = "";
 echo("AIPlayer::followPath - Attempting to follow bad path.\n");
 return;
 }

 if ((%node > %path.getCount() - 1))
 %this.targetNode = %path.getCount() - 1;
 else
 %this.targetNode = %node;

 if (%this.path $= %path)
 %this.moveToNode(%this.currentNode);
 else {
 %this.path = %path;
 %this.moveToNode(0);
 //%this.currentNode = 0;
 }
}

Approved for public release; distribution is unlimited.

107

function AIPlayer::moveToNextNode(%this)
{
 if (%this.targetNode < 0 || %this.currentNode < %this.targetNode) {
 if (%this.currentNode < %this.path.getCount() - 1)
 %this.moveToNode(%this.currentNode + 1);
 else
 %this.moveToNode(0);
 }
 else
 if (%this.currentNode == 0)
 %this.moveToNode(%this.path.getCount() - 1);
 else
 %this.moveToNode(%this.currentNode - 1);
}

function AIPlayer::moveToNode(%this,%index)
{
 // Move to the given path node index
 %this.currentNode = %index;
 %node = %this.path.getObject(%index);
 %this.setMoveDestination(%node.getTransform(), %index == %this.targetNode);
}

function AIPlayer::pushTask(%this,%method) {
 if (%this.taskIndex $= ""){
 %this.taskIndex = 0;
 %this.taskCurrent = -1;
 }
 %this.task[%this.taskIndex] = %method;
 %this.taskIndex++;
 if (%this.taskCurrent == -1)
 %this.executeTask(%this.taskIndex - 1);
}

function AIPlayer::clearTasks(%this) {
 %this.taskIndex = 0;
 %this.taskCurrent = -1;
}

function AIPlayer::nextTask(%this) {
 if (%this.taskCurrent != -1)
 if (%this.taskCurrent < %this.taskIndex - 1)
 %this.executeTask(%this.taskCurrent++);
 else
 %this.taskCurrent = -1;
}

function AIPlayer::executeTask(%this,%index) {
 %this.taskCurrent = %index;
 eval(%this.getId() @ "." @ %this.task[%index] @ ";");
}

//---
function AIPlayer::singleShot(%this)
{
 // The shooting delay is used to pulse the trigger
 %this.setImageTrigger(0,true);
 %this.setImageTrigger(0,false);
 %this.trigger = %this.schedule(%this.shootingDelay,singleShot);
}
//---

function AIPlayer::wait(%this,%time) {
 %this.schedule(%time * 1000,"nextTask");
}

function AIPlayer::done(%this,%time) {
 %this.schedule(0,"delete");
}

Approved for public release; distribution is unlimited.

108

function AIPlayer::fire(%this,%bool) {
 if (%bool) {
 cancel(%this.trigger);
 %this.singleShot();
 }
 else
 cancel(%this.trigger);
 %this.nextTask();
}

function AIPlayer::aimAt(%this,%object){
 echo("Aim: " @ %object);
 %this.setAimObject(%object);
 %this.nextTask();
}

function AIPlayer::animate(%this,%seq) {
 echo("Set animation: " @ %seq);
 //%this.stopThread(0);
 //%this.playThread(0,%seq);
 %this.setActionThread(%seq);
}
return %player;

2. In the same directory, open game.cs and add an executable (exec) function to
this file around lines 190-200 exec("./HRIexperimentAIplayer.cs"); This will
allow the new file to be executed during the Mission run. Please note that the
exec function is colored purple. If you use Torsion IDE for developing code, all
exec functions are purple (refer to pg. 38 for more information on Torsion).

3. Open the Mission file HRIExperiment1.mis (located in
C:\RIVET\sim.base\data\user_missions) and update the initial mission info:
new ScriptObject(MissionInfo). This allows the Mission File to call to the
AIplayer information.

 new ScriptObject(MissionInfo) {
 name = "RIVET TR Example: HRI Experiment 1";
 desc0 = "Designed by Dr. K.E. Schaefer, ARL";
 aiPlayerFile = "HRIexperimentAIplayer.cs";
 descLines = "1";
 map = "ARL_world";
};

Approved for public release; distribution is unlimited.

109

4. Add TorqueScript File to Spawn a NPC: Add the following code block into

a text file and save as spawnNPC.cs in the following directory
C:\RIVET\sim.base\server. This will allow NPCs to be created by a trigger file.

$tickNumber = 0;
$TotalExposureTime = 0;

//Hook into the mission editor ---
function spawnNPCTrigger::create(%data) {
 echo("spawnNPCTrigger::create");
 // The mission editor invokes this method when it wants to create an object of the given datablock type.
 %obj = new spawnNPCTrigger() {
 dataBlock = %data;
 };
return %obj;
}

// dummy datablock needed to create a trigger
// the values in this datablock are not used

datablock TriggerData(spawnNPCTrigger) {
 tickPeriodMS = 100;
};

//Events --
//this event is fired from the mission editor when a spawnNPCTrigger is added

function spawnNPCTrigger::onAdd(%this,%obj) //this event is fired from the mission editor
{
 Parent::onAdd(%this,%obj);
 echo("spawnSoldierTrigger::onAdd");

 %size = %this.triggerRadius;
 %scale = VectorScale(%obj.scale,%size*2);
 %sizeVec = %size @" "@ %size @" "@ %size;
 %pos = VectorAdd(%obj.position,%sizeVec);
 // now we have to give the static shape a controlling trigger of the right size and location
 %trigger = new Trigger() {

 dataBlock = spawnSoldierTrigger;
 position = %pos;
 rotation = %obj.rotation;
 scale = %scale;

 polyhedron = "0.000000 1.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000
0.0000000 0.0000000 0.0000000 1.0000000";

 };
 %trigger.setActive(true);
 %trigger.setOwner(%obj);
 %obj.setTrigger(%trigger);
}

//this event is fired when an object enters the trigger

function spawnNPCTrigger::onEnterTrigger(%this,%trigger,%obj)
{
 if(strcmp(%obj.getName(), "user1") == 0) {
 echo("spawnNPCTrigger::onEnterTrigger spawning " @ %trigger.npcType @ " on path " @
%trigger.npcPath);
 echo("Vehicle name " @ %obj.getName());
 %player = AIPlayer::spawnOnPath(%trigger.npcType,"SoldierNPC",%trigger.npcPath);
 %player.followPath(%trigger.npcPath,-1);
 %player.setMoveSpeed(0.4);//m/s
 // %player.setInventory(M4,1);
 // %player.setInventory(M4Ammo,100);
 // %player.mountImage(M4Image,0);
 }
}

Approved for public release; distribution is unlimited.

110

5. In the same directory, open game.cs and add an exec function to this file around
lines 190-200 exec("./spawnNPC.cs"); This will allow the new file to be
accessed during the Mission run.

6. Add a Trigger to the Mission File: A trigger will be represented by a pink
box in the VE. When your Player Character (e.g., Soldier or vehicle) crosses
through the Trigger point, it will initiate the Spawn function of the NPC at Path
Marker 1. Open Mission File and add this code.

new Trigger(NPC1) {
 position = "-12.899 44.4245 0.8";

 rotation = "0 0 1 213.805";
 scale = "10 3 2";
 dataBlock = "spawnNPCTrigger";
 polyhedron = "0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000

0.0000000 0.0000000 0.0000000 1.0000000";
 onGroup = "Default Value";
 npcType = "SoldierPlayer1";
 npcPath = "MissionGroup/ExamplePath";
};

NPC1: This is the name we provided to this Non-Player Character. You can
edit this to be a unique name.

Position: This is the location of where the Trigger will be located in the VE. A
good starting point is either near the initial SpawnSphere or near your
PathMarker1. You will be able to move it to wherever you need when you open
the VE.

Rotation: This is the orientation of the Trigger. It is adaptable within the VE.

Scale: This is the size of the Trigger. It is adaptable.

dataBlock: This is what calls to the spawnNPC.cs file to create the NPC.

npcType: This tells the spawnNPC.cs which character you want to create. **If
you directly copy these TorqueScript files into your version of RIVET, you will
only have access to SoldierPlayer1.

npcPath: This lets you set which path you want your NPC Soldier to be
located. It is adaptable.

** If you want to trigger more Soldiers to this same path, all you need to do is add
the code from Step #6 to the Mission file and move the location of the Trigger to
meet your needs for the experimental Design.

Approved for public release; distribution is unlimited.

111

Appendix I. Delete a Non-player Character with a Trigger

Approved for public release; distribution is unlimited.

112

1. Delete a NPC: There may be times that you want to delete the NPC. Add the

following code to the SpawnNPC.cs file

//---
//Delete NPC at a Trigger
//--

datablock TriggerData(deleteNPCTrigger)
{
 tickPeriodMS = 100;
};

function deleteNPCTrigger::onEnterTrigger(%this,%trigger,%obj)
{
 if(isObject(SoldierNPC) || isObject(Civilian))
 {
 echo("deleteNPCTrigger::onEnterTrigger deleting " @ %obj.getname());
 %obj.applyDamage(10000);
 // %obj.delete();
 }
}

2. Add a Delete Trigger to the VE: Add the following code to the
HRIExperiment1.mis file to create the Delete NPC trigger

new Trigger(delete_NPC1) {
 position = "-36.6411 -71.5004 0.4";
 rotation = "0 0 -1 88.8997";
 scale = "5 3 2";
 dataBlock = "deleteNPCTrigger";

 polyhedron = "0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 -1.0000000
0.0000000 0.0000000 0.0000000 1.0000000";

};

Approved for public release; distribution is unlimited.

113

Appendix J. Creating Crowds

Approved for public release; distribution is unlimited.

114

1. Open the Crowd Editor. Double-click the CrowdEditor.exe file located in
C:\RIVET\support\Crowd Tool.

2. Load the Map. The map is loaded by selecting File from the menu in the upper-
left-hand corner of the application and choosing Load Map (Fig. J-1). This will
bring up a dialog box to select the map file from the computer.

Fig. J-1 Crowd Editor menu

3. Add a Crowd. Click Add in the upper-right corner (Fig. J-2). Another GUI will
open where the name of the crowd is entered. Currently, for the software to
work properly, the crowds must be named Crowd1, Crowd2, … Crowdn, where
n is the number for the last Crowd in the scene. This will generate information
in the crowd list.

Fig. J-2 Add a crowd

Approved for public release; distribution is unlimited.

115

4. Adjust the Crowd’s Properties. The default settings will be used in the
properties menu unless the destination count, people count, and percent idle are
changed. The crowds are grouped in tens and each person type can be selected
out of the possible choices (Fig. J-3).

Fig. J-3 Crowd properties menu

Approved for public release; distribution is unlimited.

116

5. Define the Location for the Crowd. Choose the size of the brush using the
Painting slider (Figs. J-4 and J-5). This will adjust the area of the brush. The
outline choice is either a rectangle or a circle, which is the default. The Erase
Radio button is used to undo any painting previously done.

Fig. J-4 Crowd Location menu

Fig. J-5 Crowd location area

Approved for public release; distribution is unlimited.

117

6. Generate the Contour. The tolerance for the contour generation is set to 5.0.
By clicking on Generate Contours, the application will outline the area set for
the crowd (Figs. J-6 and J-7).

Fig. J-6 Generate Contour menu

Fig. J-7 Contour area

Approved for public release; distribution is unlimited.

118

7. Save Mission. Choose Save Mission from the menu and then find the mission
file (.mis) with which this crowd will be associated. It will ask, “Do you want
to overwrite?” Click yes and it will add the following to the end of the
TorqueScript file. These are the parameters set in the GUI. The positions are
the corners of the boundary line around the contour, which will enable RIVET
to create the crowd area inside the application.

new Crowd(Crowd1) {
 PeopleCount = "10";
 DestinationCount = "10";
 IdlePercent = "0.25";
 IdleTime = "1 2";
 AvailablePerson[0] = "CivMale";
 AvailablePerson[1] = "CivFemale";
 AvailablePerson[2] = "MalePlayer1";
 AvailablePerson[3] = "MalePlayer2";
 AvailablePerson[4] = "FemalePlayer1";
 AvailablePerson[5] = "FemalePlayer2";
 AvailablePerson[6] = "FemalePlayer3";
 AvailablePerson[7] = "FemalePlayer4";
 AvailablePerson[8] = "SoldierPlayer1";
 AvailablePerson[9] = "SoldierPlayer2";
 Positions = "10.8 3.2,11.2 -25.2,16.4 -25.2,16.4 -3,24 -2.4,23.6 3.2";
 };

Once a mission is complete, there is always an opportunity to make changes by
choosing File, Load Crowds from the main menu and selecting the mission to
change. This selection will then read in the crowd details in the GUI and allow
changes to any part of the crowd. Ensure that Generate Contours is selected before
saving if the contour is repainted.

Approved for public release; distribution is unlimited.

119

8. Example. An example of the way to script a file for crowds is in the
crowdAIplayer.cs file. Once the mission is launched, the crowds will appear.
An overhead view from the World Editor in Fig. J-8 shows 3 crowds labeled 1,
2, and 3. The blue squares are the contour points noted in the mission file. The
green lines are contour boundaries while the red squares are the destination
points to which the crowd participants will travel. These points are chosen
randomly for each AI player entity.

Fig. J-8 Overhead view of multiple crowds in World Editor

Approved for public release; distribution is unlimited.

120

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

121

Appendix K. Loading the CARVE Application

Approved for public release; distribution is unlimited.

122

1. Setup. Prior to opening CARVE, check to make sure that both the RIVET
Server computer, and the RIVET BOLT computer user mission directories
include the Mission File (.mis), Terrain File (.ter), Map (.png), and associated
.cs file. Specific directions on how to build these files are in Appendix B.

Fig. K-1 Required files

2. Start RIVET Server. Click on RIVET shortcut. Set vehicle to be a
BOLT-enabled vehicle, select the User Mission, and click Launch Mission (Fig.
K-2).

Fig. K-2 Start RIVET Server computer with BOLT-enabled vehicle

Approved for public release; distribution is unlimited.

123

3. Start RIVET Client. Mount the BOLT sensor. This option allows users to
BOLT an additional sensor on the vehicle and is required if the user will be
using the CARVE interface. After selecting the Mount Sensor button, a new
GUI menu will open. At this time, check to make sure the vehicle name is set
to user 1 [1], and that the sensor selected is the BOLT sensor [2]. Next, click on
Find Servers [3], select the correct IP, and select Mount Sensor [4] (Fig. K-3).

Fig. K-3 Mount the RIVET BOLT sensor to the vehicle using the Client computer

Approved for public release; distribution is unlimited.

124

It is also possible to customize the sensors through the sensor drop-down menu
(Fig. K-3, [2]).Vehicles are equipped with various sensors that are configurable
through the Sensor Configuration GUI (Fig. K-4).

Fig. K-4 Sensor Configuration GUI

The vehicles are selected in the drop-down box (Fig. K-5). These are
configurable prior to the load mission menu using vehicle configuration GUI.
Sensors that were configured are added to each vehicle configuration with a
given position and orientation.

Fig. K-5 Vehicle configuration

Approved for public release; distribution is unlimited.

125

Sensors can be local to the server or loaded on the Client machine and added
through the Mount Sensor GUI (Fig. K-6).

Fig. K-6 Mount Sensor GUI

4. Open CARVE. Now that both the RIVET server and RIVET client BOLT
sensor computers are activated, click on the CARVE shortcut icon (Fig. K-7).

Fig. K-7 CARVE shortcut icon

5. Check Connectivity. Check connectivity to make sure that CARVE can “talk”
to the RIVET Server and Client machines (Figs. K-8 and K-9).

Fig. K-8 CARVE Connectivity tool

Approved for public release; distribution is unlimited.

126

Fig. K-9 Check connectivity with RIVET machines

6. Connect CARVE to RIVET. During this initialization phase, CARVE will be
receiving the map from RIVET (Fig. K-10). This can take upwards of a minute.

Fig. K-10 Map upload from RIVET to CARVE

Approved for public release; distribution is unlimited.

127

7. Failure to Open. If CARVE is unable to receive the map, it will provide an
error message. At this point, follow the directions in Section 6.1 to identify the
issue. If CARVE successfully loaded, the video sensor will appear in the main
screen window.

Fig. K-11 Example of the CARVE failure to load map screen

8. Saving the Map. For faster future loading, it is important to save the Map. First,
open the map (Fig. K-12).

Fig. K-12 Saving the map in CARVE: open the map

Approved for public release; distribution is unlimited.

128

9. Select Map Save Icon. Once the map is opened, choose the select map save
icon (Fig. K-13).

Fig. K-13 Saving the map in CARVE: select map save icon

10. Save Map: When saving the map, use a unique Map name and write it down
because it is used when creating a CARVE Mission-specific shortcut (Fig. K-
14).

Fig. K-14 Saving the map in CARVE: assign a unique map name

Approved for public release; distribution is unlimited.

129

11. Close CARVE. Exit the program by selecting the exit program icon (Fig. K-
15).

Fig. K-15 Saving the map in CARVE: exit the program

12. Create CARVE Mission Shortcut. This shortcut pre-loads the map and
reduces wait time (Fig. K-16). On the desktop, right click on the CARVE
shortcut, and select Create Shortcut. Rename the new CARVE shortcut.

Fig. K-16 Create a CARVE shortcut for a specific mission

Approved for public release; distribution is unlimited.

130

13. Edit Properties. Right click on the new shortcut, and select properties. Add a
space and /map:Maps\HRIexperiment1.rmap (or whatever you named your
map) to the end of the Target (Fig. K-17). Now, the map will instantaneously
load when selecting the new CARVE shortcut.

Fig. K-17 Naming the new CARVE shortcut with the specific mission map

Approved for public release; distribution is unlimited.

131

Appendix L. CARVE Directions for Waypoint Following

Approved for public release; distribution is unlimited.

132

1. Adding Waypoints for Semi-Autonomous Navigation. Open a User Mission
within CARVE (see Appendix J, steps 1–6). Open the Map (see Appendix J,
step 8). The following waypoint options are available (Fig. L-1):

A. Add waypoint
B. Delete waypoint
C. Move waypoint
D. Move spot report point
E. Map position (on/off). On: Center vehicle on map; Off: Click on vehicle and move

around map
F. Zoom
G. Return zoom to 0%
H. Save map
I. Save waypoints
J. Slider for zooming map

Fig. L-1 CARVE waypoint options

Approved for public release; distribution is unlimited.

133

2. Add Waypoints. Click on the bull’s-eye with the plus sign to add waypoints
(Fig. L-2). Then click in the map. The first waypoint should be close to where
the vehicle is located. The mouse is now an orange bull’s-eye.

Fig. L-2 How to add navigation waypoints

3. Dynamic Actions. Every time a waypoint is added, an Action screen will

appear (Fig. L-3). This allows the user to customize the waypoints.

Fig. L-3 How to customize dynamic waypoint actions

Approved for public release; distribution is unlimited.

134

4. Stop Waypoint. The Stop waypoint stops the vehicle or robot in that location
for a set duration (in seconds) (Fig. L-4).

Fig. L-4 How to use the Stop waypoint action

5. SetSpeed Waypoint. This waypoint action allows you to change the speed of

the vehicle or robot at a given location (in miles per hour) (Fig. L-5).

Fig. L-5 How to use the SetSpeed waypoint action

Approved for public release; distribution is unlimited.

135

6. Finished Adding Waypoints. When you have finished adding waypoints to
the map, click on the bull’s-eye with the plus sign to exit this mode (Fig. L-6).

Fig. L-6 How to stop adding waypoints

7. Adjust Waypoints. It is possible to adjust the waypoints that were previously

placed on the map by clicking on the left mouse button and dragging the
waypoint (Fig. L-7).

Fig. L-7 How to adjust waypoints

Approved for public release; distribution is unlimited.

136

8. Adjust Actions. It is also possible to adjust or edit the Actions by clicking on
waypoint with the right mouse button (Fig. L-8).

Fig. L-8 How to adjust waypoint actions

9. Close Edit Menu. To close this menu, select the blue box (Fig. L-9).

Fig. L-9 How to close waypoint edit menu

Approved for public release; distribution is unlimited.

137

10. Save Waypoints. Select the “save waypoints” button on left-hand side of the
screen (Fig. L-10). This will open a save window. Enter a unique file name
(e.g., WaypointsHRIexperiment1) and click Save. Write down the file name
because it will be needed for step 12.

Fig. L-10 How to save waypoints

11. Exit CARVE. Exit CARVE to set up the application to automatically load the
waypoint file in the future.

Approved for public release; distribution is unlimited.

138

12. Setting up Automatic Loading of Waypoints. Right click on the CARVE
shortcut, click on properties, and add a space, followed by
/Waypoints:WaypointHRIexperiment1.txt in the Target (Fig. L-11). Press
Apply and Ok. Now when you log back into CARVE, your saved map and
waypoints will already be loaded. Waypoints can be edited at any time, just
remember to save.

Fig. L-11 Set up automatic loading of waypoints in the CARVE shortcut properties

Approved for public release; distribution is unlimited.

139

Appendix M. Directions to Set Up the Radar Task

Approved for public release; distribution is unlimited.

140

1. Setting up the Radar Task. CARVE is set up to allow users to accomplish a
secondary task while attempting to conduct a primary task such as monitoring
the unmanned vehicle. This appendix provides the steps needed to set up and
run the radar task. Once the CARVE application is open, click on the Steering
Wheel (a User Mission from RIVET is not required during setup of the radar
task) (Fig. M-1).

Fig. M-1 Select the Vehicle Operations submenu to set up the task

2. Open Radar Menu. To open the Radar menu, click on Waypoint Follow
and Save Waypoints icons (Fig. M-2).

Fig. M-2 Open radar menu

Approved for public release; distribution is unlimited.

141

3. Radar Run Setup Screen. The Run Setup Screen GUI allows the researcher to
prepare the user for the upcoming data collection. As shown in Fig. M-3, the
run name (1) is entered along with the path name (2) if a secondary task will be
used during the run. The radar check box (4) must be selected for the radar task
to start. The safety zone (5) sets the radius from the center of the radar screen.
Any blip that enters this safety zone is then changed from friendly to enemy by
changing the color from yellow to red. The path name coincides with a text file
that is created by clicking on the create path file (3).

Fig. M-3 Radar Run Setup Screen GUI

Approved for public release; distribution is unlimited.

142

4. Radar Path Creation. The button opens the Radar Path Creation Screen (Fig.
M-4). The X and Y coordinates are shown in the list box (1). The text file name
is entered in the text box (2). To enter the point, press the Click on Radar point
button (3) and then click inside the radar screen (3a). This will enter the point
in (1). This process is repeated to make a path. Upon the addition of a second
and any successive points, the path is drawn in red inside the radar screen (3a).
Once the path is complete, enter a path length in seconds (4) as well as the
length of pause between this path and the next one (5). If satisfied with the path,
click save path (6) and the number of completed paths will increase in the label
to the right of the save button. Once all the paths are completed, click Ok.
Clicking the Clear button will clear all the data from the screen, while the cancel
button will close out the GUI without saving anything.

Fig. M-4 Radar Path Creation Screen GUI

Approved for public release; distribution is unlimited.

143

5. Path Data Output. The default file name entered is PathFileName and should
be changed by the user. It is recommended that radar files be named according
to run name to help with setup and record keeping. This file is saved in the
bin\Release\Radar folder. Each file should have a unique name. If the path file
name is the same as a previous file, it will overwrite that previous file. The
radar path text file has X and Y coordinates on the same line separated by a
comma. For parsing, each path is separated by newPath (Fig. M-5). The
timeline is followed by a series of numbers that represent the time to complete
the path followed by the time between paths.

Fig. M-5 Sample data output of radar paths

Approved for public release; distribution is unlimited.

144

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

145

List of Symbols, Abbreviations, and Acronyms

3-D 3-dimensional

AAR after-action review

ARIBO applied robotics for installations and base operations

ARL US Army Research Laboratory

BOLT basic operations layer transmissions

CACTF combined arms collective training facility

CARVE Control of Autonomous Robotic Vehicle Experiment

GDRS General Dynamics Robotic Systems

GUI graphical user interface

HITL human-in-the-loop

HRI human-robot interaction

IP Internet protocol

LAN local area network

NPC non-player character

PIP picture-in-picture

RCTA Robotics Collaborative Technology Alliance

RIVET Robotic Interactive Visualization and Experimentation
Technology

SQL structured query language

TAC-C tactical autonomous combat chassis

TF task force

TGE Torque Game Engine

UAV unmanned air vehicle

UDP user datagram protocol

Approved for public release; distribution is unlimited.

146

VE virtual environment

WEI World Editor Inspector

Approved for public release; distribution is unlimited.

147

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL AND
 RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 14 DIR USARL
 (PDF) RDRL HR
 L ALLENDER
 P FRANASZCZUK
 RDRL HRM
 K MCDOWELL
 RDRL HRS
 J LOCKETT
 K OIE
 RDRL HRS E
 S HILL
 K SCHAEFER
 RDRL VTA
 J BORNESTEIN
 M FIELDS
 R BREWER
 M CHILDERS
 C LENNON
 H EDGE
 C KRONIGER

 3 ROBOTICS CLLBRTV
 (PDF) TECHNLGY ALLNCE
 GEN DYNAMICS
 D PATEL
 E WELLER
 C DIBERARDINO

 4 UNIV OF CENTRAL FLORIDA
 (PDF) F JENTSCH
 P HANCOCK
 S FIORE
 D BARBER

 148

INTENTIONALLY LEFT BLANK.

	List of Figures
	Acknowledgments
	1. Summary
	2. Introduction
	2.1 Human-Robot Interaction
	2.2 HRI and Computer-Based Simulation

	3. RIVET and CARVE for HRI Experimentation
	3.1 Overview of RIVET
	3.1.1 General Capabilities
	3.1.2 Hardware/Software Considerations
	3.1.3 RIVET Menu Options

	3.2 Overview of CARVE

	4. Procedures for Using RIVET for HRI Experimentation
	4.1 Initial Research Definition
	4.2 Setting up the Mission
	4.2.1 Virtual Terrain
	4.2.2 Static Objects
	4.2.3 Dynamic Objects: Vehicles
	4.2.4 Dynamic Objects: People

	4.3 Robot Autonomy
	4.3.1 Teleoperation, Remote Control, Manual Control
	4.3.2 Waypoint Following
	4.3.3 Autonomous Capabilities

	4.4 Alternative Tasks
	4.5 Manipulating and Measuring HRI

	5. Previous HRI Research Using RIVET
	5.1 Cordon and Search
	5.1.1 Target Detection: Person
	5.1.2 Target Detection: Object
	5.1.3 Navigation
	5.1.4 Transparency

	5.2 Gunnery
	5.3 Driverless Vehicle Transport

	6. Discussion
	6.1 Lessons Learned
	6.1.1 Problem No. 1: CARVE Does Not Always Load Correctly
	6.1.2 Problem No. 2: CARVE Takes Too Long to Load
	6.1.3 Problem No. 3: Picture Quality Is Granulated or Pixelated
	6.1.4 Problem No. 4: Camera Sensor Is Located in the Wrong Place
	6.1.5 Problem No. 5: Need to Customize Pre-loaded Animation Sequences
	6.1.6 Problem No. 6: Removing Add-ons from Pre-loaded Graphics and Animations

	6.2 Support and Documentation
	6.2.1 RIVET Developer’s Guide
	6.2.2 GarageGames.com Online Forums and Documentation
	6.2.3 The Game Programmer’s Guide to Torque
	6.2.4 Scripting
	6.2.5 Animations
	6.2.6 Other Torque Resources

	7. Conclusions
	8. References
	Appendix A. RIVET Menus
	Appendix B. CARVE Menus
	Appendix C. Creating a New Mission: Load RIVET
	Appendix D. Creating a New Mission: Editing the Terrain
	Appendix E. Add Static Objects
	Appendix F. Creating a Path
	Appendix G. Add a Path-Following Vehicle
	Appendix H. Trigger a Non-player Character1F(
	Appendix I. Delete a Non-player Character with a Trigger2F(
	Appendix J. Creating Crowds
	Appendix K. Loading the CARVE Application
	Appendix L. CARVE Directions for Waypoint Following
	Appendix M. Directions to Set Up the Radar Task
	List of Symbols, Abbreviations, and Acronyms

